1 // Part 1 about Regular Expression Matching  | 
         | 
     2 //==========================================  | 
         | 
     3   | 
         | 
     4   | 
         | 
     5 object CW8a { | 
         | 
     6   | 
         | 
     7 abstract class Rexp  | 
         | 
     8 case object ZERO extends Rexp  | 
         | 
     9 case object ONE extends Rexp  | 
         | 
    10 case class CHAR(c: Char) extends Rexp  | 
         | 
    11 case class ALT(r1: Rexp, r2: Rexp) extends Rexp   // alternative   | 
         | 
    12 case class SEQ(r1: Rexp, r2: Rexp) extends Rexp   // sequence  | 
         | 
    13 case class STAR(r: Rexp) extends Rexp             // star  | 
         | 
    14   | 
         | 
    15   | 
         | 
    16 // some convenience for typing in regular expressions  | 
         | 
    17   | 
         | 
    18 import scala.language.implicitConversions      | 
         | 
    19 import scala.language.reflectiveCalls   | 
         | 
    20   | 
         | 
    21 def charlist2rexp(s: List[Char]): Rexp = s match { | 
         | 
    22   case Nil => ONE  | 
         | 
    23   case c::Nil => CHAR(c)  | 
         | 
    24   case c::s => SEQ(CHAR(c), charlist2rexp(s))  | 
         | 
    25 }  | 
         | 
    26 implicit def string2rexp(s: String): Rexp = charlist2rexp(s.toList)  | 
         | 
    27   | 
         | 
    28 implicit def RexpOps (r: Rexp) = new { | 
         | 
    29   def | (s: Rexp) = ALT(r, s)  | 
         | 
    30   def % = STAR(r)  | 
         | 
    31   def ~ (s: Rexp) = SEQ(r, s)  | 
         | 
    32 }  | 
         | 
    33   | 
         | 
    34 implicit def stringOps (s: String) = new { | 
         | 
    35   def | (r: Rexp) = ALT(s, r)  | 
         | 
    36   def | (r: String) = ALT(s, r)  | 
         | 
    37   def % = STAR(s)  | 
         | 
    38   def ~ (r: Rexp) = SEQ(s, r)  | 
         | 
    39   def ~ (r: String) = SEQ(s, r)  | 
         | 
    40 }  | 
         | 
    41   | 
         | 
    42 // (1a) Complete the function nullable according to  | 
         | 
    43 // the definition given in the coursework; this   | 
         | 
    44 // function checks whether a regular expression  | 
         | 
    45 // can match the empty string and Returns a boolean  | 
         | 
    46 // accordingly.  | 
         | 
    47   | 
         | 
    48 //def nullable (r: Rexp) : Boolean = ...  | 
         | 
    49   | 
         | 
    50   | 
         | 
    51 // (1b) Complete the function der according to  | 
         | 
    52 // the definition given in the coursework; this  | 
         | 
    53 // function calculates the derivative of a   | 
         | 
    54 // regular expression w.r.t. a character.  | 
         | 
    55   | 
         | 
    56 //def der (c: Char, r: Rexp) : Rexp = ...  | 
         | 
    57   | 
         | 
    58   | 
         | 
    59 // (1c) Complete the simp function according to  | 
         | 
    60 // the specification given in the coursework; this  | 
         | 
    61 // function simplifies a regular expression from  | 
         | 
    62 // the inside out, like you would simplify arithmetic   | 
         | 
    63 // expressions; however it does not simplify inside   | 
         | 
    64 // STAR-regular expressions.  | 
         | 
    65   | 
         | 
    66 //def simp(r: Rexp) : Rexp = ...   | 
         | 
    67   | 
         | 
    68   | 
         | 
    69 // (1d) Complete the two functions below; the first   | 
         | 
    70 // calculates the derivative w.r.t. a string; the second  | 
         | 
    71 // is the regular expression matcher taking a regular  | 
         | 
    72 // expression and a string and checks whether the  | 
         | 
    73 // string matches the regular expression  | 
         | 
    74   | 
         | 
    75 //def ders (s: List[Char], r: Rexp) : Rexp = ...   | 
         | 
    76   | 
         | 
    77 //def matcher(r: Rexp, s: String): Boolean = ...  | 
         | 
    78   | 
         | 
    79   | 
         | 
    80 // (1e) Complete the size function for regular  | 
         | 
    81 // expressions according to the specification   | 
         | 
    82 // given in the coursework.  | 
         | 
    83   | 
         | 
    84 //def size(r: Rexp): Int = ...  | 
         | 
    85   | 
         | 
    86   | 
         | 
    87 // some testing data  | 
         | 
    88   | 
         | 
    89 /*  | 
         | 
    90 matcher(("a" ~ "b") ~ "c", "abc")  // => true | 
         | 
    91 matcher(("a" ~ "b") ~ "c", "ab")   // => false | 
         | 
    92   | 
         | 
    93 // the supposedly 'evil' regular expression (a*)* b  | 
         | 
    94 val EVIL = SEQ(STAR(STAR(CHAR('a'))), CHAR('b')) | 
         | 
    95   | 
         | 
    96 matcher(EVIL, "a" * 1000 ++ "b")   // => true  | 
         | 
    97 matcher(EVIL, "a" * 1000)          // => false  | 
         | 
    98   | 
         | 
    99 // size without simplifications  | 
         | 
   100 size(der('a', der('a', EVIL)))             // => 28 | 
         | 
   101 size(der('a', der('a', der('a', EVIL))))   // => 58 | 
         | 
   102   | 
         | 
   103 // size with simplification  | 
         | 
   104 size(simp(der('a', der('a', EVIL))))           // => 8 | 
         | 
   105 size(simp(der('a', der('a', der('a', EVIL))))) // => 8 | 
         | 
   106   | 
         | 
   107 // Java needs around 30 seconds for matching 28 a's with EVIL.   | 
         | 
   108 //  | 
         | 
   109 // Lets see how long it takes to match strings with   | 
         | 
   110 // 0.5 Million a's...it should be in the range of some  | 
         | 
   111 // seconds.  | 
         | 
   112   | 
         | 
   113 def time_needed[T](i: Int, code: => T) = { | 
         | 
   114   val start = System.nanoTime()  | 
         | 
   115   for (j <- 1 to i) code  | 
         | 
   116   val end = System.nanoTime()  | 
         | 
   117   (end - start)/(i * 1.0e9)  | 
         | 
   118 }  | 
         | 
   119   | 
         | 
   120 for (i <- 0 to 5000000 by 500000) { | 
         | 
   121   println(i + " " + "%.5f".format(time_needed(2, matcher(EVIL, "a" * i))))  | 
         | 
   122 }  | 
         | 
   123   | 
         | 
   124 */  | 
         | 
   125   | 
         | 
   126   | 
         | 
   127 }  | 
         |