| 
     1 // Main Part 2 about Movie Recommendations   | 
         | 
     2 // at Danube.co.uk  | 
         | 
     3 //===========================================  | 
         | 
     4   | 
         | 
     5 object M2 { | 
         | 
     6   | 
         | 
     7 import io.Source  | 
         | 
     8 import scala.util._  | 
         | 
     9   | 
         | 
    10 // (1) Implement the function get_csv_url which takes an url-string  | 
         | 
    11 //     as argument and requests the corresponding file. The two urls  | 
         | 
    12 //     of interest are ratings_url and movies_url, which correspond   | 
         | 
    13 //     to CSV-files.  | 
         | 
    14 //  | 
         | 
    15 //     The function should ReTurn the CSV-file appropriately broken  | 
         | 
    16 //     up into lines, and the first line should be dropped (that is without  | 
         | 
    17 //     the header of the CSV-file). The result is a list of strings (lines  | 
         | 
    18 //     in the file).  | 
         | 
    19   | 
         | 
    20 def get_csv_url(url: String) : List[String] = ???  | 
         | 
    21   | 
         | 
    22   | 
         | 
    23 val ratings_url = """https://nms.kcl.ac.uk/christian.urban/ratings.csv"""  | 
         | 
    24 val movies_url = """https://nms.kcl.ac.uk/christian.urban/movies.csv"""  | 
         | 
    25   | 
         | 
    26 // testcases  | 
         | 
    27 //-----------  | 
         | 
    28 //:  | 
         | 
    29 //val movies = get_csv_url(movies_url)  | 
         | 
    30   | 
         | 
    31 //ratings.length  // 87313  | 
         | 
    32 //movies.length   // 9742  | 
         | 
    33   | 
         | 
    34   | 
         | 
    35   | 
         | 
    36 // (2) Implement two functions that process the CSV-files from (1). The ratings  | 
         | 
    37 //     function filters out all ratings below 4 and ReTurns a list of   | 
         | 
    38 //     (userID, movieID) pairs. The movies function just ReTurns a list   | 
         | 
    39 //     of (movieID, title) pairs. Note the input to these functions, that is  | 
         | 
    40 //     the argument lines, will be the output of the function get_csv_url.  | 
         | 
    41   | 
         | 
    42   | 
         | 
    43 def process_ratings(lines: List[String]) : List[(String, String)] = ???  | 
         | 
    44   | 
         | 
    45 def process_movies(lines: List[String]) : List[(String, String)] = ???  | 
         | 
    46   | 
         | 
    47   | 
         | 
    48 // testcases  | 
         | 
    49 //-----------  | 
         | 
    50 //val good_ratings = process_ratings(ratings)  | 
         | 
    51 //val movie_names = process_movies(movies)  | 
         | 
    52   | 
         | 
    53 //good_ratings.length   //48580  | 
         | 
    54 //movie_names.length    // 9742  | 
         | 
    55   | 
         | 
    56   | 
         | 
    57   | 
         | 
    58   | 
         | 
    59 // (3) Implement a grouping function that calculates a Map  | 
         | 
    60 //     containing the userIDs and all the corresponding recommendations   | 
         | 
    61 //     (list of movieIDs). This  should be implemented in a tail  | 
         | 
    62 //     recursive fashion, using a Map m as accumulator. This Map m  | 
         | 
    63 //     is set to Map() at the beginning of the calculation.  | 
         | 
    64   | 
         | 
    65 def groupById(ratings: List[(String, String)],   | 
         | 
    66               m: Map[String, List[String]]) : Map[String, List[String]] = ???  | 
         | 
    67   | 
         | 
    68   | 
         | 
    69 // testcases  | 
         | 
    70 //-----------  | 
         | 
    71 //val ratings_map = groupById(good_ratings, Map())  | 
         | 
    72 //val movies_map = movie_names.toMap  | 
         | 
    73   | 
         | 
    74 //ratings_map.get("414").get.map(movies_map.get(_))  | 
         | 
    75 //    => most prolific recommender with 1227 positive ratings  | 
         | 
    76   | 
         | 
    77 //ratings_map.get("474").get.map(movies_map.get(_))  | 
         | 
    78 //    => second-most prolific recommender with 787 positive ratings  | 
         | 
    79   | 
         | 
    80 //ratings_map.get("214").get.map(movies_map.get(_))  | 
         | 
    81 //    => least prolific recommender with only 1 positive rating  | 
         | 
    82   | 
         | 
    83   | 
         | 
    84   | 
         | 
    85 // (4) Implement a function that takes a ratings map and a movie_name as argument.  | 
         | 
    86 //     The function calculates all suggestions containing  | 
         | 
    87 //     the movie in its recommendations. It ReTurns a list of all these  | 
         | 
    88 //     recommendations (each of them is a list and needs to have the movie deleted,   | 
         | 
    89 //     otherwise it might happen we recommend the same movie).  | 
         | 
    90   | 
         | 
    91   | 
         | 
    92 def favourites(m: Map[String, List[String]], mov: String) : List[List[String]] = ???  | 
         | 
    93   | 
         | 
    94   | 
         | 
    95 // testcases  | 
         | 
    96 //-----------  | 
         | 
    97 // movie ID "912" -> Casablanca (1942)  | 
         | 
    98 //          "858" -> Godfather  | 
         | 
    99 //          "260" -> Star Wars: Episode IV - A New Hope (1977)  | 
         | 
   100   | 
         | 
   101 //favourites(ratings_map, "912").length  // => 80  | 
         | 
   102   | 
         | 
   103 // That means there are 80 users that recommend the movie with ID 912.  | 
         | 
   104 // Of these 80  users, 55 gave a good rating to movie 858 and  | 
         | 
   105 // 52 a good rating to movies 260, 318, 593.  | 
         | 
   106   | 
         | 
   107   | 
         | 
   108   | 
         | 
   109 // (5) Implement a suggestions function which takes a rating  | 
         | 
   110 //     map and a movie_name as arguments. It calculates all the recommended  | 
         | 
   111 //     movies sorted according to the most frequently suggested movie(s) first.  | 
         | 
   112   | 
         | 
   113 def suggestions(recs: Map[String, List[String]],   | 
         | 
   114                 mov_name: String) : List[String] = ???  | 
         | 
   115   | 
         | 
   116   | 
         | 
   117 // testcases  | 
         | 
   118 //-----------  | 
         | 
   119   | 
         | 
   120 //suggestions(ratings_map, "912")  | 
         | 
   121 //suggestions(ratings_map, "912").length    | 
         | 
   122 // => 4110 suggestions with List(858, 260, 318, 593, ...)  | 
         | 
   123 //    being the most frequently suggested movies  | 
         | 
   124   | 
         | 
   125   | 
         | 
   126   | 
         | 
   127 // (6) Implement a recommendations function which generates at most  | 
         | 
   128 //     *two* of the most frequently suggested movies. It ReTurns the   | 
         | 
   129 //     actual movie names, not the movieIDs.  | 
         | 
   130   | 
         | 
   131   | 
         | 
   132 def recommendations(recs: Map[String, List[String]],  | 
         | 
   133                     movs: Map[String, String],  | 
         | 
   134                     mov_name: String) : List[String] = ???  | 
         | 
   135   | 
         | 
   136   | 
         | 
   137   | 
         | 
   138 // testcases  | 
         | 
   139 //-----------  | 
         | 
   140 // recommendations(ratings_map, movies_map, "912")  | 
         | 
   141 //   => List(Godfather, Star Wars: Episode IV - A NewHope (1977))  | 
         | 
   142   | 
         | 
   143 //recommendations(ratings_map, movies_map, "260")  | 
         | 
   144 //   => List(Star Wars: Episode V - The Empire Strikes Back (1980),   | 
         | 
   145 //           Star Wars: Episode VI - Return of the Jedi (1983))  | 
         | 
   146   | 
         | 
   147 // recommendations(ratings_map, movies_map, "2")  | 
         | 
   148 //   => List(Lion King, Jurassic Park (1993))  | 
         | 
   149   | 
         | 
   150 // recommendations(ratings_map, movies_map, "0")  | 
         | 
   151 //   => Nil  | 
         | 
   152   | 
         | 
   153 // recommendations(ratings_map, movies_map, "1")  | 
         | 
   154 //   => List(Shawshank Redemption, Forrest Gump (1994))  | 
         | 
   155   | 
         | 
   156 // recommendations(ratings_map, movies_map, "4")  | 
         | 
   157 //   => Nil  (there are three ratings for this movie in ratings.csv but they are not positive)       | 
         | 
   158   | 
         | 
   159   | 
         | 
   160   | 
         | 
   161 }  |