| 
     1 // Shunting Yard Algorithm  | 
         | 
     2 // by Edsger Dijkstra  | 
         | 
     3 // ========================  | 
         | 
     4   | 
         | 
     5 object C3a { | 
         | 
     6   | 
         | 
     7 // type of tokens  | 
         | 
     8 type Toks = List[String]  | 
         | 
     9   | 
         | 
    10 // the operations in the basic version of the algorithm  | 
         | 
    11 val ops = List("+", "-", "*", "/") | 
         | 
    12   | 
         | 
    13 // the precedences of the operators  | 
         | 
    14 val precs = Map("+" -> 1, | 
         | 
    15 		"-" -> 1,  | 
         | 
    16 		"*" -> 2,  | 
         | 
    17 		"/" -> 2)  | 
         | 
    18   | 
         | 
    19 // helper function for splitting strings into tokens  | 
         | 
    20 def split(s: String) : Toks = s.split(" ").toList | 
         | 
    21   | 
         | 
    22   | 
         | 
    23 // (1) Implement below the shunting yard algorithm. The most  | 
         | 
    24 // convenient way to this in Scala is to implement a recursive   | 
         | 
    25 // function and to heavily use pattern matching. The function syard   | 
         | 
    26 // takes some input tokens as first argument. The second and third   | 
         | 
    27 // arguments represent the stack and the output of the shunting yard   | 
         | 
    28 // algorithm.  | 
         | 
    29 //  | 
         | 
    30 // In the marking, you can assume the function is called only with   | 
         | 
    31 // an empty stack and an empty output list. You can also assume the  | 
         | 
    32 // input os  only properly formatted (infix) arithmetic expressions  | 
         | 
    33 // (all parentheses will be well-nested, the input only contains   | 
         | 
    34 // operators and numbers).  | 
         | 
    35   | 
         | 
    36 // You can implement any additional helper function you need. I found   | 
         | 
    37 // it helpful to implement two auxiliary functions for the pattern matching:    | 
         | 
    38 //   | 
         | 
    39   | 
         | 
    40 def is_op(op: String) : Boolean = ???  | 
         | 
    41 def prec(op1: String, op2: String) : Boolean = ???  | 
         | 
    42   | 
         | 
    43   | 
         | 
    44 def syard(toks: Toks, st: Toks = Nil, out: Toks = Nil) : Toks = ???  | 
         | 
    45   | 
         | 
    46   | 
         | 
    47 // test cases  | 
         | 
    48 //syard(split("3 + 4 * ( 2 - 1 )"))  // 3 4 2 1 - * + | 
         | 
    49 //syard(split("10 + 12 * 33"))       // 10 12 33 * + | 
         | 
    50 //syard(split("( 5 + 7 ) * 2"))      // 5 7 + 2 * | 
         | 
    51 //syard(split("5 + 7 / 2"))          // 5 7 2 / + | 
         | 
    52 //syard(split("5 * 7 / 2"))          // 5 7 * 2 / | 
         | 
    53 //syard(split("9 + 24 / ( 7 - 3 )")) // 9 24 7 3 - / + | 
         | 
    54   | 
         | 
    55 //syard(split("3 + 4 + 5"))           // 3 4 + 5 + | 
         | 
    56 //syard(split("( ( 3 + 4 ) + 5 )"))    // 3 4 + 5 + | 
         | 
    57 //syard(split("( 3 + ( 4 + 5 ) )"))    // 3 4 5 + + | 
         | 
    58 //syard(split("( ( ( 3 ) ) + ( ( 4 + ( 5 ) ) ) )")) // 3 4 5 + + | 
         | 
    59   | 
         | 
    60    | 
         | 
    61 // (2) Implement a compute function that evaluates an input list  | 
         | 
    62 // in postfix notation. This function takes a list of tokens  | 
         | 
    63 // and a stack as argumenta. The function should produce the   | 
         | 
    64 // result as an integer using the stack. You can assume   | 
         | 
    65 // this function will be only called with proper postfix   | 
         | 
    66 // expressions.      | 
         | 
    67   | 
         | 
    68 def compute(toks: Toks, st: List[Int] = Nil) : Int = ???  | 
         | 
    69   | 
         | 
    70   | 
         | 
    71 // test cases  | 
         | 
    72 // compute(syard(split("3 + 4 * ( 2 - 1 )")))  // 7 | 
         | 
    73 // compute(syard(split("10 + 12 * 33")))       // 406 | 
         | 
    74 // compute(syard(split("( 5 + 7 ) * 2")))      // 24 | 
         | 
    75 // compute(syard(split("5 + 7 / 2")))          // 8 | 
         | 
    76 // compute(syard(split("5 * 7 / 2")))          // 17 | 
         | 
    77 // compute(syard(split("9 + 24 / ( 7 - 3 )"))) // 15 | 
         | 
    78   | 
         | 
    79 }  | 
         | 
    80   | 
         | 
    81   |