equal
deleted
inserted
replaced
|
1 // Part 1 about the 3n+1 conceture |
|
2 //================================= |
|
3 |
|
4 |
|
5 //(1) Complete the collatz function below. It should |
|
6 //recursively calculates the number of steps needed |
|
7 //number until a series ends with 1 |
|
8 |
|
9 def collatz(n: Long): List[Long] = ... |
|
10 |
|
11 |
|
12 // an alternative that calculates the steps directly |
|
13 def collatz1(n: Long): Int = |
|
14 if (n == 1) 1 else |
|
15 if (n % 2 == 0) (1 + collatz1(n / 2)) else |
|
16 (1 + collatz1(3 * n + 1)) |
|
17 |
|
18 |
|
19 //(2) |
|
20 def collatz_max(bnd: Int): Int = { |
|
21 (for (i <- 1 to bnd) yield collatz(i).length).max |
|
22 } |
|
23 |
|
24 |
|
25 val bnds = List(10, 100, 1000, 10000, 100000, 1000000, 10000000) |
|
26 |
|
27 for (bnd <- bnds) { |
|
28 val max = collatz_max(bnd) |
|
29 println(s"In the range of 1 - ${bnd} the maximum steps are ${max}") |
|
30 } |
|
31 |