|
1 // Part 4 about finding a single tour using the Warnsdorf Rule |
|
2 //============================================================= |
|
3 |
|
4 object CW9b { // for preparing the jar |
|
5 |
|
6 type Pos = (Int, Int) |
|
7 type Path = List[Pos] |
|
8 |
|
9 |
|
10 // for measuring time in the JAR |
|
11 def time_needed[T](code: => T) : T = { |
|
12 val start = System.nanoTime() |
|
13 val result = code |
|
14 val end = System.nanoTime() |
|
15 println(f"Time needed: ${(end - start) / 1.0e9}%3.3f secs.") |
|
16 result |
|
17 } |
|
18 |
|
19 |
|
20 def print_board(dim: Int, path: Path): Unit = { |
|
21 println() |
|
22 for (i <- 0 until dim) { |
|
23 for (j <- 0 until dim) { |
|
24 print(f"${path.reverse.indexOf((i, j))}%4.0f ") |
|
25 } |
|
26 println() |
|
27 } |
|
28 } |
|
29 |
|
30 def add_pair(x: Pos, y: Pos): Pos = |
|
31 (x._1 + y._1, x._2 + y._2) |
|
32 |
|
33 def is_legal(dim: Int, path: Path, x: Pos): Boolean = |
|
34 0 <= x._1 && 0 <= x._2 && x._1 < dim && x._2 < dim && !path.contains(x) |
|
35 |
|
36 def moves(x: Pos): List[Pos] = |
|
37 List(( 1, 2),( 2, 1),( 2, -1),( 1, -2), |
|
38 (-1, -2),(-2, -1),(-2, 1),(-1, 2)).map(add_pair(x, _)) |
|
39 |
|
40 def legal_moves(dim: Int, path: Path, x: Pos): List[Pos] = |
|
41 moves(x).filter(is_legal(dim, path, _)) |
|
42 |
|
43 def ordered_moves(dim: Int, path: Path, x: Pos): List[Pos] = |
|
44 legal_moves(dim, path, x).sortBy((x) => legal_moves(dim, path, x).length) |
|
45 |
|
46 import scala.annotation.tailrec |
|
47 |
|
48 @tailrec |
|
49 def first(xs: List[Pos], f: Pos => Option[Path]): Option[Path] = xs match { |
|
50 case Nil => None |
|
51 case x::xs => { |
|
52 val result = f(x) |
|
53 if (result.isDefined) result else first(xs, f) |
|
54 } |
|
55 } |
|
56 |
|
57 |
|
58 def tfirst_closed_tour_heuristics(dim: Int, path: Path): Option[Path] = { |
|
59 if (path.length == dim * dim && moves(path.head).contains(path.last)) Some(path) |
|
60 else |
|
61 first(ordered_moves(dim, path, path.head), (x: Pos) => tfirst_closed_tour_heuristics(dim, x::path)) |
|
62 } |
|
63 |
|
64 def first_closed_tour_heuristics(dim: Int, path: Path) = |
|
65 time_needed(tfirst_closed_tour_heuristics(dim: Int, path: Path)) |
|
66 |
|
67 def first_closed_tour_heuristic(dim: Int, path: Path) = |
|
68 time_needed(tfirst_closed_tour_heuristics(dim: Int, path: Path)) |
|
69 |
|
70 // heuristic cannot be used to search for closed tours on 7 x 7 an beyond |
|
71 //for (dim <- 1 to 6) { |
|
72 // val t = time_needed(0, first_closed_tour_heuristics(dim, List((dim / 2, dim / 2)))) |
|
73 // println(s"${dim} x ${dim} closed: " + (if (t == None) "" else { print_board(dim, t.get) ; "" })) |
|
74 //} |
|
75 |
|
76 |
|
77 def tfirst_tour_heuristics(dim: Int, path: Path): Option[Path] = { |
|
78 if (path.length == dim * dim) Some(path) |
|
79 else |
|
80 first(ordered_moves(dim, path, path.head), (x: Pos) => tfirst_tour_heuristics(dim, x::path)) |
|
81 } |
|
82 |
|
83 |
|
84 def first_tour_heuristics(dim: Int, path: Path) = |
|
85 time_needed(tfirst_tour_heuristics(dim: Int, path: Path)) |
|
86 |
|
87 def first_tour_heuristic(dim: Int, path: Path) = |
|
88 time_needed(tfirst_tour_heuristics(dim: Int, path: Path)) |
|
89 |
|
90 // will be called with boards up to 30 x 30 |
|
91 |
|
92 |
|
93 } |