main_solution1/drumb.scala
changeset 347 4de31fdc0d67
parent 282 ec9773fe1dc0
child 348 b5b6ed38c2f2
equal deleted inserted replaced
346:663c2a9108d1 347:4de31fdc0d67
       
     1 // Core Part 6 about a really dumb investment strategy
       
     2 //=====================================================
       
     3 
       
     4 
       
     5 // generate jar with
       
     6 //   > scala -d drumb.jar  drumb.scala
       
     7 
       
     8 
       
     9 object CW6b { 
       
    10 
       
    11 
       
    12 //two test portfolios
       
    13 
       
    14 val blchip_portfolio = List("GOOG", "AAPL", "MSFT", "IBM", "FB", "AMZN", "BIDU")
       
    15 val rstate_portfolio = List("PLD", "PSA", "AMT", "AIV", "AVB", "BXP", "CCI", 
       
    16                             "DLR", "EQIX", "EQR", "ESS", "EXR", "FRT", "HCP") 
       
    17 
       
    18 import io.Source
       
    19 import scala.util._
       
    20 
       
    21 // (1) The function below takes a stock symbol and a year as arguments.
       
    22 //     It should read the corresponding CSV-file and reads the January 
       
    23 //     data from the given year. The data should be collected in a list of
       
    24 //     strings for each line in the CSV-file.
       
    25 
       
    26 def get_january_data(symbol: String, year: Int) : List[String] = 
       
    27   Source.fromFile(symbol ++ ".csv")("ISO-8859-1").getLines.toList.filter(_.startsWith(year.toString))
       
    28 
       
    29 
       
    30 //test cases
       
    31 //blchip_portfolio.map(get_january_data(_, 2018))
       
    32 //rstate_portfolio.map(get_january_data(_, 2018))
       
    33 
       
    34 //get_january_data("GOOG", 1980)
       
    35 //get_january_data("GOOG", 2010)
       
    36 //get_january_data("FB", 2014)
       
    37 
       
    38 //get_january_data("PLD", 1980)
       
    39 //get_january_data("EQIX", 2010)
       
    40 //get_january_data("ESS", 2014)
       
    41 
       
    42 
       
    43 // (2) From the output of the get_january_data function, the next function 
       
    44 //     should extract the first line (if it exists) and the corresponding
       
    45 //     first trading price in that year with type Option[Double]. If no line 
       
    46 //     is generated by get_january_data then the result is None; Some if 
       
    47 //     there is a price.
       
    48 
       
    49 def get_first_price(symbol: String, year: Int) : Option[Double] = {
       
    50   val data = Try(Some(get_january_data(symbol, year).head)) getOrElse None 
       
    51   data.map(_.split(",").toList(1).toDouble)
       
    52 }
       
    53 
       
    54 //test cases
       
    55 //get_first_price("GOOG", 1980)
       
    56 //get_first_price("GOOG", 2010)
       
    57 //get_first_price("FB", 2014)
       
    58 
       
    59 /*
       
    60 for (i <- 1978 to 2018) {
       
    61   println(blchip_portfolio.map(get_first_price(_, i)))
       
    62 }
       
    63 
       
    64 for (i <- 1978 to 2018) {
       
    65   println(rstate_portfolio.map(get_first_price(_, i)))
       
    66 }
       
    67 */ 
       
    68 
       
    69 
       
    70 // (3) Complete the function below that obtains all first prices
       
    71 //     for the stock symbols from a portfolio (list of strings) and 
       
    72 //     for the given range of years. The inner lists are for the
       
    73 //     stock symbols and the outer list for the years.
       
    74 
       
    75 def get_prices(portfolio: List[String], years: Range): List[List[Option[Double]]] = 
       
    76   for (year <- years.toList) yield
       
    77     for (symbol <- portfolio) yield get_first_price(symbol, year)
       
    78 
       
    79 
       
    80 //test cases
       
    81 
       
    82 //println("Task 3 data from Google and Apple in 2010 to 2012")
       
    83 //val goog_aapl_prices = get_prices(List("GOOG", "AAPL"), 2010 to 2012)
       
    84 //println(goog_aapl_prices.toString ++ "\n")
       
    85 
       
    86 //val p_fb = get_prices(List("FB"), 2012 to 2014)
       
    87 //val tt = get_prices(List("BIDU"), 2004 to 2008)
       
    88 
       
    89 
       
    90 // (4) The function below calculates the change factor (delta) between
       
    91 //     a price in year n and a price in year n + 1. 
       
    92 
       
    93 def get_delta(price_old: Option[Double], price_new: Option[Double]) : Option[Double] = {
       
    94   (price_old, price_new) match {
       
    95     case (Some(x), Some(y)) => Some((y - x) / x)
       
    96     case _ => None
       
    97   }
       
    98 }
       
    99 
       
   100 
       
   101 // (5) The next function calculates all change factors for all prices (from a 
       
   102 //     portfolio). The input to this function are the nested lists created by 
       
   103 //     get_prices above.
       
   104 
       
   105 def get_deltas(data: List[List[Option[Double]]]):  List[List[Option[Double]]] =
       
   106   for (i <- (0 until (data.length - 1)).toList) yield 
       
   107     for (j <- (0 until (data(0).length)).toList) yield get_delta(data(i)(j), data(i + 1)(j))
       
   108 
       
   109 
       
   110 
       
   111 // test case using the prices calculated above
       
   112 
       
   113 //println("Task 5 change prices from Google and Apple in 2010 and 2011")
       
   114 //val goog_aapl_deltas = get_deltas(goog_aapl_prices)
       
   115 //println(goog_aapl_deltas.toString ++ "\n")
       
   116 
       
   117 //val ttd = get_deltas(tt)
       
   118 
       
   119 
       
   120 // (6) Write a function that given change factors, a starting balance and an index,
       
   121 //     calculates the yearly yield, i.e. new balance, according to our dumb investment 
       
   122 //     strategy. Index points to a year in the data list.
       
   123 
       
   124 def yearly_yield(data: List[List[Option[Double]]], balance: Long, index: Int): Long = {
       
   125   val somes = data(index).flatten
       
   126   val somes_length = somes.length
       
   127   if (somes_length == 0) balance
       
   128   else {
       
   129     val portion: Double = balance.toDouble / somes_length.toDouble
       
   130     balance + (for (x <- somes) yield (x * portion)).sum.toLong
       
   131   }
       
   132 }
       
   133 
       
   134 // test case using the deltas calculated above
       
   135 //println("Task 6 yield from Google and Apple in 2010 with  balance 100")
       
   136 
       
   137 //val d0 = goog_aapl_deltas(0)(0)
       
   138 //val d1 = goog_aapl_deltas(0)(1)
       
   139 //println(s"50 * ${d0.get} + 50 * ${d1.get} = ${50.toDouble * d0.get + 50.toDouble * d1.get}")
       
   140 
       
   141 
       
   142 //val goog_aapl_yield = yearly_yield(goog_aapl_deltas, 100, 0)
       
   143 //println("Rounded yield: " ++ goog_aapl_yield.toString ++ "\n")
       
   144 
       
   145 
       
   146 //yearly_yield(get_prices(rstate_portfolio, 2016 to 2018), 100, 2) 
       
   147 //get_prices(rstate_portfolio, 2016 to 2018)(2).flatten.sum
       
   148 
       
   149 
       
   150 // (7) Write a function compound_yield that calculates the overall balance for a 
       
   151 //     range of years where in each year the yearly profit is compounded to the new 
       
   152 //     balances and then re-invested into our portfolio. For this use the function and 
       
   153 //     results generated under (6). The function investment calls compound_yield
       
   154 //     with the appropriate deltas and the first index.
       
   155 
       
   156 
       
   157 def compound_yield(data: List[List[Option[Double]]], balance: Long, index: Int): Long = {
       
   158   if (index >= data.length) balance else {
       
   159     val new_balance = yearly_yield(data, balance, index)
       
   160     compound_yield(data, new_balance, index + 1)
       
   161   }
       
   162 }
       
   163 
       
   164 def investment(portfolio: List[String], years: Range, start_balance: Long): Long = {
       
   165   compound_yield(get_deltas(get_prices(portfolio, years)), start_balance, 0)
       
   166 }
       
   167 
       
   168 
       
   169 
       
   170 //test cases for the two portfolios given above
       
   171 
       
   172 //println("Real data: " + investment(rstate_portfolio, 1978 to 2019, 100))
       
   173 //println("Blue data: " + investment(blchip_portfolio, 1978 to 2019, 100))
       
   174 
       
   175 }
       
   176 
       
   177 
       
   178