|
1 // Core Part 6 about a really dumb investment strategy |
|
2 //===================================================== |
|
3 |
|
4 |
|
5 // generate jar with |
|
6 // > scala -d drumb.jar drumb.scala |
|
7 |
|
8 |
|
9 object CW6b { |
|
10 |
|
11 |
|
12 //two test portfolios |
|
13 |
|
14 val blchip_portfolio = List("GOOG", "AAPL", "MSFT", "IBM", "FB", "AMZN", "BIDU") |
|
15 val rstate_portfolio = List("PLD", "PSA", "AMT", "AIV", "AVB", "BXP", "CCI", |
|
16 "DLR", "EQIX", "EQR", "ESS", "EXR", "FRT", "HCP") |
|
17 |
|
18 import io.Source |
|
19 import scala.util._ |
|
20 |
|
21 // (1) The function below takes a stock symbol and a year as arguments. |
|
22 // It should read the corresponding CSV-file and reads the January |
|
23 // data from the given year. The data should be collected in a list of |
|
24 // strings for each line in the CSV-file. |
|
25 |
|
26 def get_january_data(symbol: String, year: Int) : List[String] = |
|
27 Source.fromFile(symbol ++ ".csv")("ISO-8859-1").getLines.toList.filter(_.startsWith(year.toString)) |
|
28 |
|
29 |
|
30 //test cases |
|
31 //blchip_portfolio.map(get_january_data(_, 2018)) |
|
32 //rstate_portfolio.map(get_january_data(_, 2018)) |
|
33 |
|
34 //get_january_data("GOOG", 1980) |
|
35 //get_january_data("GOOG", 2010) |
|
36 //get_january_data("FB", 2014) |
|
37 |
|
38 //get_january_data("PLD", 1980) |
|
39 //get_january_data("EQIX", 2010) |
|
40 //get_january_data("ESS", 2014) |
|
41 |
|
42 |
|
43 // (2) From the output of the get_january_data function, the next function |
|
44 // should extract the first line (if it exists) and the corresponding |
|
45 // first trading price in that year with type Option[Double]. If no line |
|
46 // is generated by get_january_data then the result is None; Some if |
|
47 // there is a price. |
|
48 |
|
49 def get_first_price(symbol: String, year: Int) : Option[Double] = { |
|
50 val data = Try(Some(get_january_data(symbol, year).head)) getOrElse None |
|
51 data.map(_.split(",").toList(1).toDouble) |
|
52 } |
|
53 |
|
54 //test cases |
|
55 //get_first_price("GOOG", 1980) |
|
56 //get_first_price("GOOG", 2010) |
|
57 //get_first_price("FB", 2014) |
|
58 |
|
59 /* |
|
60 for (i <- 1978 to 2018) { |
|
61 println(blchip_portfolio.map(get_first_price(_, i))) |
|
62 } |
|
63 |
|
64 for (i <- 1978 to 2018) { |
|
65 println(rstate_portfolio.map(get_first_price(_, i))) |
|
66 } |
|
67 */ |
|
68 |
|
69 |
|
70 // (3) Complete the function below that obtains all first prices |
|
71 // for the stock symbols from a portfolio (list of strings) and |
|
72 // for the given range of years. The inner lists are for the |
|
73 // stock symbols and the outer list for the years. |
|
74 |
|
75 def get_prices(portfolio: List[String], years: Range): List[List[Option[Double]]] = |
|
76 for (year <- years.toList) yield |
|
77 for (symbol <- portfolio) yield get_first_price(symbol, year) |
|
78 |
|
79 |
|
80 //test cases |
|
81 |
|
82 //println("Task 3 data from Google and Apple in 2010 to 2012") |
|
83 //val goog_aapl_prices = get_prices(List("GOOG", "AAPL"), 2010 to 2012) |
|
84 //println(goog_aapl_prices.toString ++ "\n") |
|
85 |
|
86 //val p_fb = get_prices(List("FB"), 2012 to 2014) |
|
87 //val tt = get_prices(List("BIDU"), 2004 to 2008) |
|
88 |
|
89 |
|
90 // (4) The function below calculates the change factor (delta) between |
|
91 // a price in year n and a price in year n + 1. |
|
92 |
|
93 def get_delta(price_old: Option[Double], price_new: Option[Double]) : Option[Double] = { |
|
94 (price_old, price_new) match { |
|
95 case (Some(x), Some(y)) => Some((y - x) / x) |
|
96 case _ => None |
|
97 } |
|
98 } |
|
99 |
|
100 |
|
101 // (5) The next function calculates all change factors for all prices (from a |
|
102 // portfolio). The input to this function are the nested lists created by |
|
103 // get_prices above. |
|
104 |
|
105 def get_deltas(data: List[List[Option[Double]]]): List[List[Option[Double]]] = |
|
106 for (i <- (0 until (data.length - 1)).toList) yield |
|
107 for (j <- (0 until (data(0).length)).toList) yield get_delta(data(i)(j), data(i + 1)(j)) |
|
108 |
|
109 |
|
110 |
|
111 // test case using the prices calculated above |
|
112 |
|
113 //println("Task 5 change prices from Google and Apple in 2010 and 2011") |
|
114 //val goog_aapl_deltas = get_deltas(goog_aapl_prices) |
|
115 //println(goog_aapl_deltas.toString ++ "\n") |
|
116 |
|
117 //val ttd = get_deltas(tt) |
|
118 |
|
119 |
|
120 // (6) Write a function that given change factors, a starting balance and an index, |
|
121 // calculates the yearly yield, i.e. new balance, according to our dumb investment |
|
122 // strategy. Index points to a year in the data list. |
|
123 |
|
124 def yearly_yield(data: List[List[Option[Double]]], balance: Long, index: Int): Long = { |
|
125 val somes = data(index).flatten |
|
126 val somes_length = somes.length |
|
127 if (somes_length == 0) balance |
|
128 else { |
|
129 val portion: Double = balance.toDouble / somes_length.toDouble |
|
130 balance + (for (x <- somes) yield (x * portion)).sum.toLong |
|
131 } |
|
132 } |
|
133 |
|
134 // test case using the deltas calculated above |
|
135 //println("Task 6 yield from Google and Apple in 2010 with balance 100") |
|
136 |
|
137 //val d0 = goog_aapl_deltas(0)(0) |
|
138 //val d1 = goog_aapl_deltas(0)(1) |
|
139 //println(s"50 * ${d0.get} + 50 * ${d1.get} = ${50.toDouble * d0.get + 50.toDouble * d1.get}") |
|
140 |
|
141 |
|
142 //val goog_aapl_yield = yearly_yield(goog_aapl_deltas, 100, 0) |
|
143 //println("Rounded yield: " ++ goog_aapl_yield.toString ++ "\n") |
|
144 |
|
145 |
|
146 //yearly_yield(get_prices(rstate_portfolio, 2016 to 2018), 100, 2) |
|
147 //get_prices(rstate_portfolio, 2016 to 2018)(2).flatten.sum |
|
148 |
|
149 |
|
150 // (7) Write a function compound_yield that calculates the overall balance for a |
|
151 // range of years where in each year the yearly profit is compounded to the new |
|
152 // balances and then re-invested into our portfolio. For this use the function and |
|
153 // results generated under (6). The function investment calls compound_yield |
|
154 // with the appropriate deltas and the first index. |
|
155 |
|
156 |
|
157 def compound_yield(data: List[List[Option[Double]]], balance: Long, index: Int): Long = { |
|
158 if (index >= data.length) balance else { |
|
159 val new_balance = yearly_yield(data, balance, index) |
|
160 compound_yield(data, new_balance, index + 1) |
|
161 } |
|
162 } |
|
163 |
|
164 def investment(portfolio: List[String], years: Range, start_balance: Long): Long = { |
|
165 compound_yield(get_deltas(get_prices(portfolio, years)), start_balance, 0) |
|
166 } |
|
167 |
|
168 |
|
169 |
|
170 //test cases for the two portfolios given above |
|
171 |
|
172 //println("Real data: " + investment(rstate_portfolio, 1978 to 2019, 100)) |
|
173 //println("Blue data: " + investment(blchip_portfolio, 1978 to 2019, 100)) |
|
174 |
|
175 } |
|
176 |
|
177 |
|
178 |