|
1 // Advanvced Part 3 about a really dumb investment strategy |
|
2 //========================================================== |
|
3 |
|
4 object CW6c { |
|
5 |
|
6 |
|
7 //two test portfolios |
|
8 |
|
9 val blchip_portfolio = List("GOOG", "AAPL", "MSFT", "IBM", "FB", "AMZN", "BIDU") |
|
10 val rstate_portfolio = List("PLD", "PSA", "AMT", "AIV", "AVB", "BXP", "CCI", |
|
11 "DLR", "EQIX", "EQR", "ESS", "EXR", "FRT", "GGP", "HCP") |
|
12 |
|
13 // (1) The function below should obtain the first trading price |
|
14 // for a stock symbol by using the query |
|
15 // |
|
16 // http://ichart.yahoo.com/table.csv?s=<<symbol>>&a=0&b=1&c=<<year>>&d=1&e=1&f=<<year>> |
|
17 // |
|
18 // and extracting the first January Adjusted Close price in a year. |
|
19 |
|
20 |
|
21 import io.Source |
|
22 import scala.util._ |
|
23 |
|
24 def get_january_data(symbol: String, year: Int) : List[String] = |
|
25 Source.fromFile(symbol ++ ".csv").getLines.toList.filter(_.startsWith(year.toString)) |
|
26 |
|
27 |
|
28 def get_first_price(symbol: String, year: Int) : Option[Double] = { |
|
29 val data = Try(Some(get_january_data(symbol, year).head)) getOrElse None |
|
30 data.map(_.split(",").toList(1).toDouble) |
|
31 } |
|
32 |
|
33 get_first_price("GOOG", 1980) |
|
34 get_first_price("GOOG", 2010) |
|
35 get_first_price("FB", 2014) |
|
36 |
|
37 |
|
38 // Complete the function below that obtains all first prices |
|
39 // for the stock symbols from a portfolio for the given |
|
40 // range of years |
|
41 |
|
42 def get_prices(portfolio: List[String], years: Range): List[List[Option[Double]]] = |
|
43 for (year <- years.toList) yield |
|
44 for (symbol <- portfolio) yield get_first_price(symbol, year) |
|
45 |
|
46 |
|
47 // test case |
|
48 val p_fb = get_prices(List("FB"), 2012 to 2014) |
|
49 val p = get_prices(List("GOOG", "AAPL"), 2010 to 2012) |
|
50 |
|
51 val tt = get_prices(List("BIDU"), 2004 to 2008) |
|
52 |
|
53 // (2) The first function below calculates the change factor (delta) between |
|
54 // a price in year n and a price in year n+1. The second function calculates |
|
55 // all change factors for all prices (from a portfolio). |
|
56 |
|
57 def get_delta(price_old: Option[Double], price_new: Option[Double]) : Option[Double] = { |
|
58 (price_old, price_new) match { |
|
59 case (Some(x), Some(y)) => Some((y - x) / x) |
|
60 case _ => None |
|
61 } |
|
62 } |
|
63 |
|
64 def get_deltas(data: List[List[Option[Double]]]): List[List[Option[Double]]] = |
|
65 for (i <- (0 until (data.length - 1)).toList) yield |
|
66 for (j <- (0 until (data(0).length)).toList) yield get_delta(data(i)(j), data(i + 1)(j)) |
|
67 |
|
68 |
|
69 // test case using the prices calculated above |
|
70 val d = get_deltas(p) |
|
71 val ttd = get_deltas(tt) |
|
72 |
|
73 // (3) Write a function that given change factors, a starting balance and a year |
|
74 // calculates the yearly yield, i.e. new balanace, according to our dump investment |
|
75 // strategy. Another function calculates given the same data calculates the |
|
76 // compound yield up to a given year. Finally a function combines all |
|
77 // calculations by taking a portfolio, a range of years and a start balance |
|
78 // as arguments. |
|
79 |
|
80 |
|
81 def yearly_yield(data: List[List[Option[Double]]], balance: Long, year: Int): Long = { |
|
82 val somes = data(year).flatten |
|
83 val somes_length = somes.length |
|
84 if (somes_length == 0) balance |
|
85 else { |
|
86 val portion: Double = balance.toDouble / somes_length.toDouble |
|
87 balance + (for (x <- somes) yield (x * portion)).sum.toLong |
|
88 } |
|
89 } |
|
90 |
|
91 def compound_yield(data: List[List[Option[Double]]], balance: Long, year: Int): Long = { |
|
92 if (year >= data.length) balance else { |
|
93 val new_balance = yearly_yield(data, balance, year) |
|
94 compound_yield(data, new_balance, year + 1) |
|
95 } |
|
96 } |
|
97 |
|
98 //yearly_yield(d, 100, 0) |
|
99 //compound_yield(d.take(6), 100, 0) |
|
100 |
|
101 //test case |
|
102 //yearly_yield(d, 100, 0) |
|
103 //yearly_yield(d, 225, 1) |
|
104 //yearly_yield(d, 246, 2) |
|
105 //yearly_yield(d, 466, 3) |
|
106 //yearly_yield(d, 218, 4) |
|
107 |
|
108 //yearly_yield(d, 100, 0) |
|
109 //yearly_yield(d, 125, 1) |
|
110 |
|
111 def investment(portfolio: List[String], years: Range, start_balance: Long): Long = { |
|
112 compound_yield(get_deltas(get_prices(portfolio, years)), start_balance, 0) |
|
113 } |
|
114 |
|
115 /* |
|
116 val q1 = get_deltas(get_prices(List("GOOG", "AAPL", "BIDU"), 2000 to 2017)) |
|
117 yearly_yield(q1, 100, 0) |
|
118 yearly_yield(q1, 100, 1) |
|
119 yearly_yield(q1, 100, 2) |
|
120 yearly_yield(q1, 100, 3) |
|
121 yearly_yield(q1, 100, 4) |
|
122 yearly_yield(q1, 100, 5) |
|
123 yearly_yield(q1, 100, 6) |
|
124 |
|
125 investment(List("GOOG", "AAPL", "BIDU"), 2004 to 2017, 100) |
|
126 val one = get_deltas(get_prices(rstate_portfolio, 1978 to 1984)) |
|
127 val two = get_deltas(get_prices(blchip_portfolio, 1978 to 1984)) |
|
128 |
|
129 val one_full = get_deltas(get_prices(rstate_portfolio, 1978 to 2017)) |
|
130 val two_full = get_deltas(get_prices(blchip_portfolio, 1978 to 2017)) |
|
131 |
|
132 one_full.map(_.flatten).map(_.sum).sum |
|
133 two_full.map(_.flatten).map(_.sum).sum |
|
134 |
|
135 //test cases for the two portfolios given above |
|
136 |
|
137 //println("Real data: " + investment(rstate_portfolio, 1978 to 2017, 100)) |
|
138 //println("Blue data: " + investment(blchip_portfolio, 1978 to 2017, 100)) |
|
139 |
|
140 for (i <- 2000 to 2017) { |
|
141 println("Year " + i) |
|
142 //println("Real data: " + investment(rstate_portfolio, 1978 to i, 100)) |
|
143 //println("Blue data: " + investment(blchip_portfolio, 1978 to i, 100)) |
|
144 println("test: " + investment(List("GOOG", "AAPL", "BIDU"), 2000 to i, 100)) |
|
145 } |
|
146 |
|
147 |
|
148 */ |
|
149 //1984 |
|
150 //1992 |
|
151 } |