|
1 // Part 1 about Regular Expression Matching |
|
2 //========================================== |
|
3 |
|
4 |
|
5 abstract class Rexp |
|
6 case object ZERO extends Rexp |
|
7 case object ONE extends Rexp |
|
8 case class CHAR(c: Char) extends Rexp |
|
9 case class ALT(r1: Rexp, r2: Rexp) extends Rexp // alternative |
|
10 case class SEQ(r1: Rexp, r2: Rexp) extends Rexp // sequence |
|
11 case class STAR(r: Rexp) extends Rexp // star |
|
12 |
|
13 |
|
14 // some convenience for typing in regular expressions |
|
15 |
|
16 import scala.language.implicitConversions |
|
17 import scala.language.reflectiveCalls |
|
18 |
|
19 def charlist2rexp(s: List[Char]): Rexp = s match { |
|
20 case Nil => ONE |
|
21 case c::Nil => CHAR(c) |
|
22 case c::s => SEQ(CHAR(c), charlist2rexp(s)) |
|
23 } |
|
24 implicit def string2rexp(s: String): Rexp = charlist2rexp(s.toList) |
|
25 |
|
26 implicit def RexpOps (r: Rexp) = new { |
|
27 def | (s: Rexp) = ALT(r, s) |
|
28 def % = STAR(r) |
|
29 def ~ (s: Rexp) = SEQ(r, s) |
|
30 } |
|
31 |
|
32 implicit def stringOps (s: String) = new { |
|
33 def | (r: Rexp) = ALT(s, r) |
|
34 def | (r: String) = ALT(s, r) |
|
35 def % = STAR(s) |
|
36 def ~ (r: Rexp) = SEQ(s, r) |
|
37 def ~ (r: String) = SEQ(s, r) |
|
38 } |
|
39 |
|
40 // (1) Complete the function nullable according to |
|
41 // the definition given in the coursework; this |
|
42 // function checks whether a regular expression |
|
43 // can match the empty string and Returns a boolean |
|
44 // accordingly. |
|
45 |
|
46 //def nullable (r: Rexp) : Boolean = ... |
|
47 |
|
48 |
|
49 // (2) Complete the function der according to |
|
50 // the definition given in the coursework; this |
|
51 // function calculates the derivative of a |
|
52 // regular expression w.r.t. a character. |
|
53 |
|
54 //def der (c: Char, r: Rexp) : Rexp = ... |
|
55 |
|
56 |
|
57 // (3) Complete the simp function according to |
|
58 // the specification given in the coursework; this |
|
59 // function simplifies a regular expression from |
|
60 // the inside out, like you would simplify arithmetic |
|
61 // expressions; however it does not simplify inside |
|
62 // STAR-regular expressions. |
|
63 |
|
64 //def simp(r: Rexp) : Rexp = ... |
|
65 |
|
66 |
|
67 // (4) Complete the two functions below; the first |
|
68 // calculates the derivative w.r.t. a string; the second |
|
69 // is the regular expression matcher taking a regular |
|
70 // expression and a string and checks whether the |
|
71 // string matches the regular expression |
|
72 |
|
73 //def ders (s: List[Char], r: Rexp) : Rexp = ... |
|
74 |
|
75 //def matcher(r: Rexp, s: String): Boolean = ... |
|
76 |
|
77 |
|
78 // (5) Complete the size function for regular |
|
79 // expressions according to the specification |
|
80 // given in the coursework. |
|
81 |
|
82 //def size(r: Rexp): Int = ... |
|
83 |
|
84 |
|
85 // some testing data |
|
86 |
|
87 /* |
|
88 matcher(("a" ~ "b") ~ "c", "abc") // => true |
|
89 matcher(("a" ~ "b") ~ "c", "ab") // => false |
|
90 |
|
91 // the supposedly 'evil' regular expression (a*)* b |
|
92 val EVIL = SEQ(STAR(STAR(CHAR('a'))), CHAR('b')) |
|
93 |
|
94 matcher(EVIL, "a" * 1000 ++ "b") // => true |
|
95 matcher(EVIL, "a" * 1000) // => false |
|
96 |
|
97 // size without simplifications |
|
98 size(der('a', der('a', EVIL))) // => 28 |
|
99 size(der('a', der('a', der('a', EVIL)))) // => 58 |
|
100 |
|
101 // size with simplification |
|
102 size(simp(der('a', der('a', EVIL)))) // => 8 |
|
103 size(simp(der('a', der('a', der('a', EVIL))))) // => 8 |
|
104 |
|
105 // Java needs around 30 seconds for matching 28 a's with EVIL. |
|
106 // |
|
107 // Lets see how long it really takes to match strings with |
|
108 // 0.5 Million a's...it should be in the range of some |
|
109 // seconds. |
|
110 |
|
111 def time_needed[T](i: Int, code: => T) = { |
|
112 val start = System.nanoTime() |
|
113 for (j <- 1 to i) code |
|
114 val end = System.nanoTime() |
|
115 (end - start)/(i * 1.0e9) |
|
116 } |
|
117 |
|
118 for (i <- 0 to 5000000 by 500000) { |
|
119 println(i + " " + "%.5f".format(time_needed(2, matcher(EVIL, "a" * i)))) |
|
120 } |
|
121 |
|
122 */ |
|
123 |