|      1 // Part 1 about Regular Expression Matching |         | 
|      2 //========================================== |         | 
|      3  |         | 
|      4 object CW8a { |         | 
|      5  |         | 
|      6 abstract class Rexp |         | 
|      7 case object ZERO extends Rexp |         | 
|      8 case object ONE extends Rexp |         | 
|      9 case class CHAR(c: Char) extends Rexp |         | 
|     10 case class ALT(r1: Rexp, r2: Rexp) extends Rexp  |         | 
|     11 case class SEQ(r1: Rexp, r2: Rexp) extends Rexp  |         | 
|     12 case class STAR(r: Rexp) extends Rexp  |         | 
|     13  |         | 
|     14 // some convenience for typing in regular expressions |         | 
|     15  |         | 
|     16 import scala.language.implicitConversions     |         | 
|     17 import scala.language.reflectiveCalls  |         | 
|     18  |         | 
|     19  |         | 
|     20 def charlist2rexp(s: List[Char]): Rexp = s match { |         | 
|     21   case Nil => ONE |         | 
|     22   case c::Nil => CHAR(c) |         | 
|     23   case c::s => SEQ(CHAR(c), charlist2rexp(s)) |         | 
|     24 } |         | 
|     25 implicit def string2rexp(s: String): Rexp = charlist2rexp(s.toList) |         | 
|     26  |         | 
|     27 implicit def RexpOps (r: Rexp) = new { |         | 
|     28   def | (s: Rexp) = ALT(r, s) |         | 
|     29   def % = STAR(r) |         | 
|     30   def ~ (s: Rexp) = SEQ(r, s) |         | 
|     31 } |         | 
|     32  |         | 
|     33 implicit def stringOps (s: String) = new { |         | 
|     34   def | (r: Rexp) = ALT(s, r) |         | 
|     35   def | (r: String) = ALT(s, r) |         | 
|     36   def % = STAR(s) |         | 
|     37   def ~ (r: Rexp) = SEQ(s, r) |         | 
|     38   def ~ (r: String) = SEQ(s, r) |         | 
|     39 } |         | 
|     40  |         | 
|     41 // (1a) Complete the function nullable according to |         | 
|     42 // the definition given in the coursework; this  |         | 
|     43 // function checks whether a regular expression |         | 
|     44 // can match the empty string |         | 
|     45  |         | 
|     46 def nullable (r: Rexp) : Boolean = r match { |         | 
|     47   case ZERO => false |         | 
|     48   case ONE => true |         | 
|     49   case CHAR(_) => false |         | 
|     50   case ALT(r1, r2) => nullable(r1) || nullable(r2) |         | 
|     51   case SEQ(r1, r2) => nullable(r1) && nullable(r2) |         | 
|     52   case STAR(_) => true |         | 
|     53 } |         | 
|     54  |         | 
|     55 // (1b) Complete the function der according to |         | 
|     56 // the definition given in the coursework; this |         | 
|     57 // function calculates the derivative of a  |         | 
|     58 // regular expression w.r.t. a character |         | 
|     59  |         | 
|     60 def der (c: Char, r: Rexp) : Rexp = r match { |         | 
|     61   case ZERO => ZERO |         | 
|     62   case ONE => ZERO |         | 
|     63   case CHAR(d) => if (c == d) ONE else ZERO |         | 
|     64   case ALT(r1, r2) => ALT(der(c, r1), der(c, r2)) |         | 
|     65   case SEQ(r1, r2) =>  |         | 
|     66     if (nullable(r1)) ALT(SEQ(der(c, r1), r2), der(c, r2)) |         | 
|     67     else SEQ(der(c, r1), r2) |         | 
|     68   case STAR(r1) => SEQ(der(c, r1), STAR(r1)) |         | 
|     69 } |         | 
|     70  |         | 
|     71 // (1c) Complete the function der according to |         | 
|     72 // the specification given in the coursework; this |         | 
|     73 // function simplifies a regular expression; |         | 
|     74 // however it does not simplify inside STAR-regular |         | 
|     75 // expressions |         | 
|     76  |         | 
|     77 def simp(r: Rexp) : Rexp = r match { |         | 
|     78   case ALT(r1, r2) => (simp(r1), simp(r2)) match { |         | 
|     79     case (ZERO, r2s) => r2s |         | 
|     80     case (r1s, ZERO) => r1s |         | 
|     81     case (r1s, r2s) => if (r1s == r2s) r1s else ALT (r1s, r2s) |         | 
|     82   } |         | 
|     83   case SEQ(r1, r2) =>  (simp(r1), simp(r2)) match { |         | 
|     84     case (ZERO, _) => ZERO |         | 
|     85     case (_, ZERO) => ZERO |         | 
|     86     case (ONE, r2s) => r2s |         | 
|     87     case (r1s, ONE) => r1s |         | 
|     88     case (r1s, r2s) => SEQ(r1s, r2s) |         | 
|     89   } |         | 
|     90   case r => r |         | 
|     91 } |         | 
|     92  |         | 
|     93 // (1d) Complete the two functions below; the first  |         | 
|     94 // calculates the derivative w.r.t. a string; the second |         | 
|     95 // is the regular expression matcher taking a regular |         | 
|     96 // expression and a string and checks whether the |         | 
|     97 // string matches the regular expression |         | 
|     98  |         | 
|     99 def ders (s: List[Char], r: Rexp) : Rexp = s match { |         | 
|    100   case Nil => r |         | 
|    101   case c::s => ders(s, simp(der(c, r))) |         | 
|    102 } |         | 
|    103  |         | 
|    104 // main matcher function |         | 
|    105 def matcher(r: Rexp, s: String): Boolean = nullable(ders(s.toList, r)) |         | 
|    106  |         | 
|    107 // (1e) Complete the size function for regular |         | 
|    108 // expressions  according to the specification  |         | 
|    109 // given in the coursework. |         | 
|    110  |         | 
|    111 def size(r: Rexp): Int = r match { |         | 
|    112   case ZERO => 1 |         | 
|    113   case ONE => 1 |         | 
|    114   case CHAR(_) => 1 |         | 
|    115   case ALT(r1, r2) => 1 + size(r1) + size (r2) |         | 
|    116   case SEQ(r1, r2) => 1 + size(r1) + size (r2) |         | 
|    117   case STAR(r1) => 1 + size(r1) |         | 
|    118 } |         | 
|    119  |         | 
|    120  |         | 
|    121  |         | 
|    122 // some testing data |         | 
|    123 /* |         | 
|    124 matcher(("a" ~ "b") ~ "c", "abc")  // => true |         | 
|    125 matcher(("a" ~ "b") ~ "c", "ab")   // => false |         | 
|    126  |         | 
|    127 // the supposedly 'evil' regular expression (a*)* b |         | 
|    128 val EVIL = SEQ(STAR(STAR(CHAR('a'))), CHAR('b')) |         | 
|    129  |         | 
|    130 matcher(EVIL, "a" * 1000 ++ "b")   // => true |         | 
|    131 matcher(EVIL, "a" * 1000)          // => false |         | 
|    132  |         | 
|    133 // size without simplifications |         | 
|    134 size(der('a', der('a', EVIL)))             // => 28 |         | 
|    135 size(der('a', der('a', der('a', EVIL))))   // => 58 |         | 
|    136  |         | 
|    137 // size with simplification |         | 
|    138 size(simp(der('a', der('a', EVIL))))           // => 8 |         | 
|    139 size(simp(der('a', der('a', der('a', EVIL))))) // => 8 |         | 
|    140  |         | 
|    141 // Java needs around 30 seconds for matching 28 a's with EVIL.  |         | 
|    142 // |         | 
|    143 // Lets see how long it takes to match strings with  |         | 
|    144 // 0.5 Million a's...it should be in the range of some |         | 
|    145 // seconds. |         | 
|    146  |         | 
|    147 def time_needed[T](i: Int, code: => T) = { |         | 
|    148   val start = System.nanoTime() |         | 
|    149   for (j <- 1 to i) code |         | 
|    150   val end = System.nanoTime() |         | 
|    151   (end - start)/(i * 1.0e9) |         | 
|    152 } |         | 
|    153  |         | 
|    154 for (i <- 0 to 5000000 by 500000) { |         | 
|    155   println(i + " " + "%.5f".format(time_needed(2, matcher(EVIL, "a" * i)))) |         | 
|    156 } |         | 
|    157 */ |         | 
|    158  |         | 
|    159 } |         |