| 
     1 // Shunting Yard Algorithm   | 
         | 
     2 // including Associativity for Operators   | 
         | 
     3 // =====================================  | 
         | 
     4   | 
         | 
     5 object C3b { | 
         | 
     6   | 
         | 
     7 // type of tokens  | 
         | 
     8 type Toks = List[String]  | 
         | 
     9   | 
         | 
    10 // helper function for splitting strings into tokens  | 
         | 
    11 def split(s: String) : Toks = s.split(" ").toList | 
         | 
    12   | 
         | 
    13 // left- and right-associativity  | 
         | 
    14 abstract class Assoc  | 
         | 
    15 case object LA extends Assoc  | 
         | 
    16 case object RA extends Assoc  | 
         | 
    17   | 
         | 
    18 // power is right-associative,  | 
         | 
    19 // everything else is left-associative  | 
         | 
    20 def assoc(s: String) : Assoc = s match { | 
         | 
    21   case "^" => RA  | 
         | 
    22   case _ => LA  | 
         | 
    23 }  | 
         | 
    24   | 
         | 
    25 // the precedences of the operators  | 
         | 
    26 val precs = Map("+" -> 1, | 
         | 
    27   		 "-" -> 1,  | 
         | 
    28 		 "*" -> 2,  | 
         | 
    29 		 "/" -> 2,  | 
         | 
    30                  "^" -> 4)  | 
         | 
    31   | 
         | 
    32 // the operations in the basic version of the algorithm  | 
         | 
    33 val ops = List("+", "-", "*", "/", "^") | 
         | 
    34   | 
         | 
    35 // (8) Implement the extended version of the shunting yard algorithm.  | 
         | 
    36 // This version should properly account for the fact that the power   | 
         | 
    37 // operation is right-associative. Apart from the extension to include  | 
         | 
    38 // the power operation, you can make the same assumptions as in   | 
         | 
    39 // basic version.  | 
         | 
    40   | 
         | 
    41 def is_op(op: String) : Boolean = ops.contains(op)  | 
         | 
    42   | 
         | 
    43 def prec(op1: String, op2: String) : Boolean = assoc(op1) match { | 
         | 
    44   case LA => precs(op1) <= precs(op2)  | 
         | 
    45   case RA => precs(op1) < precs(op2)  | 
         | 
    46 }  | 
         | 
    47   | 
         | 
    48 def syard(toks: Toks, st: Toks = Nil, out: Toks = Nil) : Toks = (toks, st, out) match { | 
         | 
    49   case (Nil, _, _) => out.reverse ::: st  | 
         | 
    50   case (num::in, st, out) if (num.forall(_.isDigit)) =>   | 
         | 
    51     syard(in, st, num :: out)  | 
         | 
    52   case (op1::in, op2::st, out) if (is_op(op1) && is_op(op2) && prec(op1, op2)) =>  | 
         | 
    53     syard(op1::in, st, op2 :: out)   | 
         | 
    54   case (op1::in, st, out) if (is_op(op1)) => syard(in, op1::st, out)  | 
         | 
    55   case ("("::in, st, out) => syard(in, "("::st, out) | 
         | 
    56   case (")"::in, op2::st, out) => | 
         | 
    57     if (op2 == "(") syard(in, st, out) else syard(")"::in, st, op2 :: out) | 
         | 
    58   case (in, st, out) => { | 
         | 
    59     println(s"in: ${in}   st: ${st}   out: ${out.reverse}") | 
         | 
    60     Nil  | 
         | 
    61   }    | 
         | 
    62 }   | 
         | 
    63   | 
         | 
    64 def op_comp(s: String, n1: Int, n2: Int) = s match { | 
         | 
    65   case "+" => n2 + n1  | 
         | 
    66   case "-" => n2 - n1  | 
         | 
    67   case "*" => n2 * n1  | 
         | 
    68   case "/" => n2 / n1  | 
         | 
    69   case "^" => BigInt(n2).pow(n1).toInt  | 
         | 
    70 }   | 
         | 
    71   | 
         | 
    72 def compute(toks: Toks, st: List[Int] = Nil) : Int = (toks, st) match { | 
         | 
    73   case (Nil, st) => st.head  | 
         | 
    74   case (op::in, n1::n2::st) if (is_op(op)) => compute(in, op_comp(op, n1, n2)::st)  | 
         | 
    75   case (num::in, st) => compute(in, num.toInt::st)    | 
         | 
    76 }  | 
         | 
    77   | 
         | 
    78   | 
         | 
    79   | 
         | 
    80   | 
         | 
    81 //compute(syard(split("3 + 4 * ( 2 - 1 )")))   // 7 | 
         | 
    82 //compute(syard(split("10 + 12 * 33")))       // 406 | 
         | 
    83 //compute(syard(split("( 5 + 7 ) * 2")))      // 24 | 
         | 
    84 //compute(syard(split("5 + 7 / 2")))          // 8 | 
         | 
    85 //compute(syard(split("5 * 7 / 2")))          // 17 | 
         | 
    86 //compute(syard(split("9 + 24 / ( 7 - 3 )"))) // 15 | 
         | 
    87   | 
         | 
    88 //compute(syard(split("4 ^ 3 ^ 2")))      // 262144 | 
         | 
    89 //compute(syard(split("4 ^ ( 3 ^ 2 )")))  // 262144 | 
         | 
    90 //compute(syard(split("( 4 ^ 3 ) ^ 2")))  // 4096 | 
         | 
    91 //compute(syard(split("( 3 + 1 ) ^ 2 ^ 3")))   // 65536 | 
         | 
    92   | 
         | 
    93 //syard(split("3 + 4 * 8 / ( 5 - 1 ) ^ 2 ^ 3"))  // 3 4 8 * 5 1 - 2 3 ^ ^ / + | 
         | 
    94 //compute(syard(split("3 + 4 * 8 / ( 5 - 1 ) ^ 2 ^ 3"))) // 3 | 
         | 
    95   | 
         | 
    96 //compute(syard(split("( 3 + 1 ) ^ 2 ^ 3")))   // 65536 | 
         | 
    97   | 
         | 
    98   | 
         | 
    99   | 
         | 
   100 }  |