|         |      1 // Shunting Yard Algorithm | 
|         |      2 // by Edsger Dijkstra | 
|         |      3 // ======================== | 
|         |      4  | 
|         |      5 object C3a { | 
|         |      6  | 
|         |      7 type Toks = List[String] | 
|         |      8  | 
|         |      9 // the operations in the simple version | 
|         |     10 val ops = List("+", "-", "*", "/") | 
|         |     11  | 
|         |     12 // the precedences of the operators | 
|         |     13 val precs = Map("+" -> 1, | 
|         |     14 		"-" -> 1, | 
|         |     15 		"*" -> 2, | 
|         |     16 		"/" -> 2) | 
|         |     17  | 
|         |     18 // helper function for splitting strings into tokens | 
|         |     19 def split(s: String) : Toks = s.split(" ").toList | 
|         |     20  | 
|         |     21 // (6) Implement below the shunting yard algorithm. The most | 
|         |     22 // convenient way to this in Scala is to implement a recursive  | 
|         |     23 // function and to heavily use pattern matching. The function syard  | 
|         |     24 // takes some input tokens as first argument. The second and third  | 
|         |     25 // arguments represent the stack and the output of the shunting yard  | 
|         |     26 // algorithm. | 
|         |     27 // | 
|         |     28 // In the marking, you can assume the function is called only with  | 
|         |     29 // an empty stack and an empty output list. You can also assume the | 
|         |     30 // input os  only properly formatted (infix) arithmetic expressions | 
|         |     31 // (all parentheses will be well-nested, the input only contains  | 
|         |     32 // operators and numbers). | 
|         |     33  | 
|         |     34 // You can implement any additional helper function you need. I found  | 
|         |     35 // it helpful to implement two auxiliary functions for the pattern matching:   | 
|         |     36 //  | 
|         |     37   | 
|         |     38 def is_op(op: String) : Boolean = ops.contains(op) | 
|         |     39  | 
|         |     40 def prec(op1: String, op2: String) : Boolean = precs(op1) <= precs(op2) | 
|         |     41  | 
|         |     42  | 
|         |     43 def syard(toks: Toks, st: Toks = Nil, out: Toks = Nil) : Toks = (toks, st, out) match { | 
|         |     44   case (Nil, _, _) => out.reverse ::: st | 
|         |     45   case (num::in, st, out) if (num.forall(_.isDigit)) =>  | 
|         |     46     syard(in, st, num :: out) | 
|         |     47   case (op1::in, op2::st, out)  if (is_op(op1) && is_op(op2) && prec(op1, op2)) => | 
|         |     48     syard(op1::in, st, op2 :: out)  | 
|         |     49   case (op1::in, st, out) if (is_op(op1)) => syard(in, op1::st, out) | 
|         |     50   case ("("::in, st, out) => syard(in, "("::st, out) | 
|         |     51   case (")"::in, op2::st, out) => | 
|         |     52     if (op2 == "(") syard(in, st, out) else syard(")"::in, st, op2 :: out) | 
|         |     53   case (in, st, out) => { | 
|         |     54     println(s"in: ${in}   st: ${st}   out: ${out.reverse}") | 
|         |     55     Nil | 
|         |     56   }   | 
|         |     57 }  | 
|         |     58  | 
|         |     59  | 
|         |     60 // test cases | 
|         |     61 //syard(split("3 + 4 * ( 2 - 1 )"))  // 3 4 2 1 - * + | 
|         |     62 //syard(split("10 + 12 * 33"))       // 10 12 33 * + | 
|         |     63 //syard(split("( 5 + 7 ) * 2"))      // 5 7 + 2 * | 
|         |     64 //syard(split("5 + 7 / 2"))          // 5 7 2 / + | 
|         |     65 //syard(split("5 * 7 / 2"))          // 5 7 * 2 / | 
|         |     66 //syard(split("9 + 24 / ( 7 - 3 )")) // 9 24 7 3 - / + | 
|         |     67  | 
|         |     68 //syard(split("3 + 4 + 5"))           // 3 4 + 5 + | 
|         |     69 //syard(split("( ( 3 + 4 ) + 5 )"))    // 3 4 + 5 + | 
|         |     70 //syard(split("( 3 + ( 4 + 5 ) )"))    // 3 4 5 + + | 
|         |     71 //syard(split("( ( ( 3 ) ) + ( ( 4 + ( 5 ) ) ) )")) // 3 4 5 + + | 
|         |     72  | 
|         |     73 // (7) Implement a compute function that evaluates an input list | 
|         |     74 // in postfix notation. This function takes a list of tokens | 
|         |     75 // and a stack as argumenta. The function should produce the  | 
|         |     76 // result as an integer using the stack. You can assume  | 
|         |     77 // this function will be only called with proper postfix  | 
|         |     78 // expressions.     | 
|         |     79  | 
|         |     80 def op_comp(s: String, n1: Int, n2: Int) = s match { | 
|         |     81   case "+" => n2 + n1 | 
|         |     82   case "-" => n2 - n1 | 
|         |     83   case "*" => n2 * n1 | 
|         |     84   case "/" => n2 / n1 | 
|         |     85 }  | 
|         |     86  | 
|         |     87 def compute(toks: Toks, st: List[Int] = Nil) : Int = (toks, st) match { | 
|         |     88   case (Nil, st) => st.head | 
|         |     89   case (op::in, n1::n2::st) if (is_op(op)) => compute(in, op_comp(op, n1, n2)::st) | 
|         |     90   case (num::in, st) => compute(in, num.toInt::st)   | 
|         |     91 } | 
|         |     92  | 
|         |     93 // test cases | 
|         |     94 // compute(syard(split("3 + 4 * ( 2 - 1 )")))  // 7 | 
|         |     95 // compute(syard(split("10 + 12 * 33")))       // 406 | 
|         |     96 // compute(syard(split("( 5 + 7 ) * 2")))      // 24 | 
|         |     97 // compute(syard(split("5 + 7 / 2")))          // 8 | 
|         |     98 // compute(syard(split("5 * 7 / 2")))          // 17 | 
|         |     99 // compute(syard(split("9 + 24 / ( 7 - 3 )"))) // 15 | 
|         |    100  | 
|         |    101 } | 
|         |    102  | 
|         |    103  |