| 
     1 // Shunting Yard Algorithm  | 
         | 
     2 // by Edsger Dijkstra  | 
         | 
     3 // ========================  | 
         | 
     4   | 
         | 
     5 object C3a { | 
         | 
     6   | 
         | 
     7 type Toks = List[String]  | 
         | 
     8   | 
         | 
     9 // the operations in the simple version  | 
         | 
    10 val ops = List("+", "-", "*", "/") | 
         | 
    11   | 
         | 
    12 // the precedences of the operators  | 
         | 
    13 val precs = Map("+" -> 1, | 
         | 
    14 		"-" -> 1,  | 
         | 
    15 		"*" -> 2,  | 
         | 
    16 		"/" -> 2)  | 
         | 
    17   | 
         | 
    18 // helper function for splitting strings into tokens  | 
         | 
    19 def split(s: String) : Toks = s.split(" ").toList | 
         | 
    20   | 
         | 
    21 // (6) Implement below the shunting yard algorithm. The most  | 
         | 
    22 // convenient way to this in Scala is to implement a recursive   | 
         | 
    23 // function and to heavily use pattern matching. The function syard   | 
         | 
    24 // takes some input tokens as first argument. The second and third   | 
         | 
    25 // arguments represent the stack and the output of the shunting yard   | 
         | 
    26 // algorithm.  | 
         | 
    27 //  | 
         | 
    28 // In the marking, you can assume the function is called only with   | 
         | 
    29 // an empty stack and an empty output list. You can also assume the  | 
         | 
    30 // input os  only properly formatted (infix) arithmetic expressions  | 
         | 
    31 // (all parentheses will be well-nested, the input only contains   | 
         | 
    32 // operators and numbers).  | 
         | 
    33   | 
         | 
    34 // You can implement any additional helper function you need. I found   | 
         | 
    35 // it helpful to implement two auxiliary functions for the pattern matching:    | 
         | 
    36 //   | 
         | 
    37    | 
         | 
    38 def is_op(op: String) : Boolean = ops.contains(op)  | 
         | 
    39   | 
         | 
    40 def prec(op1: String, op2: String) : Boolean = precs(op1) <= precs(op2)  | 
         | 
    41   | 
         | 
    42   | 
         | 
    43 def syard(toks: Toks, st: Toks = Nil, out: Toks = Nil) : Toks = (toks, st, out) match { | 
         | 
    44   case (Nil, _, _) => out.reverse ::: st  | 
         | 
    45   case (num::in, st, out) if (num.forall(_.isDigit)) =>   | 
         | 
    46     syard(in, st, num :: out)  | 
         | 
    47   case (op1::in, op2::st, out)  if (is_op(op1) && is_op(op2) && prec(op1, op2)) =>  | 
         | 
    48     syard(op1::in, st, op2 :: out)   | 
         | 
    49   case (op1::in, st, out) if (is_op(op1)) => syard(in, op1::st, out)  | 
         | 
    50   case ("("::in, st, out) => syard(in, "("::st, out) | 
         | 
    51   case (")"::in, op2::st, out) => | 
         | 
    52     if (op2 == "(") syard(in, st, out) else syard(")"::in, st, op2 :: out) | 
         | 
    53   case (in, st, out) => { | 
         | 
    54     println(s"in: ${in}   st: ${st}   out: ${out.reverse}") | 
         | 
    55     Nil  | 
         | 
    56   }    | 
         | 
    57 }   | 
         | 
    58   | 
         | 
    59   | 
         | 
    60 // test cases  | 
         | 
    61 //syard(split("3 + 4 * ( 2 - 1 )"))  // 3 4 2 1 - * + | 
         | 
    62 //syard(split("10 + 12 * 33"))       // 10 12 33 * + | 
         | 
    63 //syard(split("( 5 + 7 ) * 2"))      // 5 7 + 2 * | 
         | 
    64 //syard(split("5 + 7 / 2"))          // 5 7 2 / + | 
         | 
    65 //syard(split("5 * 7 / 2"))          // 5 7 * 2 / | 
         | 
    66 //syard(split("9 + 24 / ( 7 - 3 )")) // 9 24 7 3 - / + | 
         | 
    67   | 
         | 
    68 //syard(split("3 + 4 + 5"))           // 3 4 + 5 + | 
         | 
    69 //syard(split("( ( 3 + 4 ) + 5 )"))    // 3 4 + 5 + | 
         | 
    70 //syard(split("( 3 + ( 4 + 5 ) )"))    // 3 4 5 + + | 
         | 
    71 //syard(split("( ( ( 3 ) ) + ( ( 4 + ( 5 ) ) ) )")) // 3 4 5 + + | 
         | 
    72   | 
         | 
    73 // (7) Implement a compute function that evaluates an input list  | 
         | 
    74 // in postfix notation. This function takes a list of tokens  | 
         | 
    75 // and a stack as argumenta. The function should produce the   | 
         | 
    76 // result as an integer using the stack. You can assume   | 
         | 
    77 // this function will be only called with proper postfix   | 
         | 
    78 // expressions.      | 
         | 
    79   | 
         | 
    80 def op_comp(s: String, n1: Int, n2: Int) = s match { | 
         | 
    81   case "+" => n2 + n1  | 
         | 
    82   case "-" => n2 - n1  | 
         | 
    83   case "*" => n2 * n1  | 
         | 
    84   case "/" => n2 / n1  | 
         | 
    85 }   | 
         | 
    86   | 
         | 
    87 def compute(toks: Toks, st: List[Int] = Nil) : Int = (toks, st) match { | 
         | 
    88   case (Nil, st) => st.head  | 
         | 
    89   case (op::in, n1::n2::st) if (is_op(op)) => compute(in, op_comp(op, n1, n2)::st)  | 
         | 
    90   case (num::in, st) => compute(in, num.toInt::st)    | 
         | 
    91 }  | 
         | 
    92   | 
         | 
    93 // test cases  | 
         | 
    94 // compute(syard(split("3 + 4 * ( 2 - 1 )")))  // 7 | 
         | 
    95 // compute(syard(split("10 + 12 * 33")))       // 406 | 
         | 
    96 // compute(syard(split("( 5 + 7 ) * 2")))      // 24 | 
         | 
    97 // compute(syard(split("5 + 7 / 2")))          // 8 | 
         | 
    98 // compute(syard(split("5 * 7 / 2")))          // 17 | 
         | 
    99 // compute(syard(split("9 + 24 / ( 7 - 3 )"))) // 15 | 
         | 
   100   | 
         | 
   101 }  | 
         | 
   102   | 
         | 
   103   |