| 
     1 // Part 2 and 3 about Movie Recommendations   | 
         | 
     2 // at Danube.co.uk  | 
         | 
     3 //===========================================  | 
         | 
     4   | 
         | 
     5 import io.Source  | 
         | 
     6 import scala.util._  | 
         | 
     7   | 
         | 
     8 //object CW7b { // for purposes of generating a jar | 
         | 
     9   | 
         | 
    10 // (1) Implement the function get_csv_url which takes an url-string  | 
         | 
    11 //     as argument and requests the corresponding file. The two urls  | 
         | 
    12 //     of interest are ratings_url and movies_url, which correspond   | 
         | 
    13 //     to CSV-files.  | 
         | 
    14 //     The function should ReTurn the CSV file appropriately broken  | 
         | 
    15 //     up into lines, and the first line should be dropped (that is without  | 
         | 
    16 //     the header of the CSV file). The result is a list of strings (lines  | 
         | 
    17 //     in the file).  | 
         | 
    18   | 
         | 
    19 def get_csv_url(url: String) : List[String] = { | 
         | 
    20   val csv = Source.fromURL(url)("ISO-8859-1") | 
         | 
    21   csv.mkString.split("\n").toList.drop(1) | 
         | 
    22 }  | 
         | 
    23   | 
         | 
    24 val ratings_url = """https://nms.kcl.ac.uk/christian.urban/ratings.csv"""  | 
         | 
    25 val movies_url = """https://nms.kcl.ac.uk/christian.urban/movies.csv"""  | 
         | 
    26   | 
         | 
    27 // test cases  | 
         | 
    28   | 
         | 
    29 //val ratings = get_csv_url(ratings_url)  | 
         | 
    30 //val movies = get_csv_url(movies_url)  | 
         | 
    31   | 
         | 
    32 //ratings.length  // 87313  | 
         | 
    33 //movies.length   // 9742  | 
         | 
    34   | 
         | 
    35 // (2) Implement two functions that process the CSV files. The ratings  | 
         | 
    36 //     function filters out all ratings below 4 and ReTurns a list of   | 
         | 
    37 //     (userID, movieID) pairs. The movies function just ReTurns a list   | 
         | 
    38 //     of (movieId, title) pairs.  | 
         | 
    39   | 
         | 
    40   | 
         | 
    41 def process_ratings(lines: List[String]) : List[(String, String)] = { | 
         | 
    42   for (cols <- lines.map(_.split(",").toList);  | 
         | 
    43        if (cols(2).toFloat >= 4)) yield (cols(0), cols(1))    | 
         | 
    44 }  | 
         | 
    45   | 
         | 
    46 def process_movies(lines: List[String]) : List[(String, String)] = { | 
         | 
    47   for (cols <- lines.map(_.split(",").toList)) yield (cols(0), cols(1))   | 
         | 
    48 }  | 
         | 
    49   | 
         | 
    50 // test cases  | 
         | 
    51   | 
         | 
    52 //val good_ratings = process_ratings(ratings)  | 
         | 
    53 //val movie_names = process_movies(movies)  | 
         | 
    54   | 
         | 
    55 //good_ratings.length   //48580  | 
         | 
    56 //movie_names.length    // 9742  | 
         | 
    57   | 
         | 
    58 //==============================================  | 
         | 
    59 // Do not change anything below, unless you want   | 
         | 
    60 // to submit the file for the advanced part 3!  | 
         | 
    61 //==============================================  | 
         | 
    62   | 
         | 
    63   | 
         | 
    64 // (3) Implement a grouping function that calulates a map  | 
         | 
    65 //     containing the userIds and all the corresponding recommendations   | 
         | 
    66 //     (list of movieIds). This  should be implemented in a tail  | 
         | 
    67 //     recursive fashion, using a map m as accumulator. This map  | 
         | 
    68 //     is set to Map() at the beginning of the claculation.  | 
         | 
    69   | 
         | 
    70 def groupById(ratings: List[(String, String)],   | 
         | 
    71               m: Map[String, List[String]]) : Map[String, List[String]] = ratings match { | 
         | 
    72   case Nil => m  | 
         | 
    73   case (id, mov) :: rest => { | 
         | 
    74     val old_ratings = m.getOrElse (id, Nil)  | 
         | 
    75     val new_ratings = m + (id -> (mov :: old_ratings))  | 
         | 
    76     groupById(rest, new_ratings)  | 
         | 
    77   }  | 
         | 
    78 }  | 
         | 
    79   | 
         | 
    80 // test cases  | 
         | 
    81 //val ratings_map = groupById(good_ratings, Map())  | 
         | 
    82 //val movies_map = movie_names.toMap  | 
         | 
    83   | 
         | 
    84 //ratings_map.get("414").get.map(movies_map.get(_)) // most prolific recommender with 1227 positive ratings | 
         | 
    85 //ratings_map.get("474").get.map(movies_map.get(_)) // second-most prolific recommender with 787 positive ratings | 
         | 
    86 //ratings_map.get("214").get.map(movies_map.get(_)) // least prolific recommender with only 1 positive rating | 
         | 
    87   | 
         | 
    88   | 
         | 
    89   | 
         | 
    90 //(4) Implement a function that takes a ratings map and a movie_name as argument.  | 
         | 
    91 // The function calculates all suggestions containing  | 
         | 
    92 // the movie mov in its recommendations. It ReTurns a list of all these  | 
         | 
    93 // recommendations (each of them is a list and needs to have mov deleted,   | 
         | 
    94 // otherwise it might happen we recommend the same movie).  | 
         | 
    95   | 
         | 
    96 def favourites(m: Map[String, List[String]], mov: String) : List[List[String]] =   | 
         | 
    97   (for (id <- m.keys.toList;  | 
         | 
    98         if m(id).contains(mov)) yield m(id).filter(_ != mov))  | 
         | 
    99   | 
         | 
   100   | 
         | 
   101   | 
         | 
   102 // test cases  | 
         | 
   103 // movie ID "912" -> Casablanca (1942)  | 
         | 
   104 //          "858" -> Godfather  | 
         | 
   105 //          "260" -> Star Wars: Episode IV - A New Hope (1977)  | 
         | 
   106   | 
         | 
   107 //favourites(ratings_map, "912").length  // => 80  | 
         | 
   108   | 
         | 
   109 // That means there are 80 users that recommend the movie with ID 912.  | 
         | 
   110 // Of these 80  users, 55 gave a good rating to movie 858 and  | 
         | 
   111 // 52 a good rating to movies 260, 318, 593.  | 
         | 
   112   | 
         | 
   113   | 
         | 
   114 // (5) Implement a suggestions function which takes a rating  | 
         | 
   115 // map and a movie_name as arguments. It calculates all the recommended  | 
         | 
   116 // movies sorted according to the most frequently suggested movie(s) first.  | 
         | 
   117 def suggestions(recs: Map[String, List[String]],   | 
         | 
   118                     mov_name: String) : List[String] = { | 
         | 
   119   val favs = favourites(recs, mov_name).flatten  | 
         | 
   120   val favs_counted = favs.groupBy(identity).mapValues(_.size).toList  | 
         | 
   121   val favs_sorted = favs_counted.sortBy(_._2).reverse  | 
         | 
   122   favs_sorted.map(_._1)  | 
         | 
   123 }  | 
         | 
   124   | 
         | 
   125 // test cases  | 
         | 
   126   | 
         | 
   127 //suggestions(ratings_map, "912")  | 
         | 
   128 //suggestions(ratings_map, "912").length    | 
         | 
   129 // => 4110 suggestions with List(858, 260, 318, 593, ...)  | 
         | 
   130 //    being the most frequently suggested movies  | 
         | 
   131   | 
         | 
   132 // (6) Implement recommendations functions which generates at most  | 
         | 
   133 // *two* of the most frequently suggested movies. It Returns the   | 
         | 
   134 // actual movie names, not the movieIDs.  | 
         | 
   135   | 
         | 
   136 def recommendations(recs: Map[String, List[String]],  | 
         | 
   137                    movs: Map[String, String],  | 
         | 
   138                    mov_name: String) : List[String] =  | 
         | 
   139   suggestions(recs, mov_name).take(2).map(movs.get(_).get)                   | 
         | 
   140   | 
         | 
   141   | 
         | 
   142 // testcases  | 
         | 
   143   | 
         | 
   144 // recommendations(ratings_map, movies_map, "912")  | 
         | 
   145 //   => List(Godfather, Star Wars: Episode IV - A NewHope (1977))  | 
         | 
   146   | 
         | 
   147 //recommendations(ratings_map, movies_map, "260")  | 
         | 
   148 //   => List(Star Wars: Episode V - The Empire Strikes Back (1980),   | 
         | 
   149 //           Star Wars: Episode VI - Return of the Jedi (1983))  | 
         | 
   150   | 
         | 
   151 // recommendations(ratings_map, movies_map, "2")  | 
         | 
   152 //   => List(Lion King, Jurassic Park (1993))  | 
         | 
   153   | 
         | 
   154 // recommendations(ratings_map, movies_map, "0")  | 
         | 
   155 //   => Nil  | 
         | 
   156   | 
         | 
   157 // recommendations(ratings_map, movies_map, "1")  | 
         | 
   158 //   => List(Shawshank Redemption, Forrest Gump (1994))  | 
         | 
   159   | 
         | 
   160 // recommendations(ratings_map, movies_map, "4")  | 
         | 
   161 //   => Nil  (there are three ratings fro this movie in ratings.csv but they are not positive)       | 
         | 
   162   | 
         | 
   163   | 
         | 
   164 // If you want to calculate the recomendations for all movies.  | 
         | 
   165 // Will take a few seconds calculation time.  | 
         | 
   166   | 
         | 
   167 //val all = for (name <- movie_names.map(_._1)) yield { | 
         | 
   168 //  recommendations(ratings_map, movies_map, name)  | 
         | 
   169 //}  | 
         | 
   170   | 
         | 
   171 // helper functions  | 
         | 
   172 //List().take(2  | 
         | 
   173 //List(1).take(2)  | 
         | 
   174 //List(1,2).take(2)  | 
         | 
   175 //List(1,2,3).take(2)  | 
         | 
   176   | 
         | 
   177 //}  |