| 
     1 // Main Part about a really dumb investment strategy  | 
         | 
     2 //======================================================  | 
         | 
     3   | 
         | 
     4 object CW6b { | 
         | 
     5   | 
         | 
     6   | 
         | 
     7 //two test portfolios  | 
         | 
     8   | 
         | 
     9 val blchip_portfolio = List("GOOG", "AAPL", "MSFT", "IBM", "FB", "AMZN", "BIDU") | 
         | 
    10 val rstate_portfolio = List("PLD", "PSA", "AMT", "AIV", "AVB", "BXP", "CCI",  | 
         | 
    11                             "DLR", "EQIX", "EQR", "ESS", "EXR", "FRT", "HCP")   | 
         | 
    12   | 
         | 
    13 import io.Source  | 
         | 
    14 import scala.util._  | 
         | 
    15   | 
         | 
    16 // (1) The function below takes a stock symbol and a year as arguments.  | 
         | 
    17 //     It should read the corresponding CSV-file and reads the January   | 
         | 
    18 //     data from the given year. The data should be collected in a list of  | 
         | 
    19 //     strings for each line in the CSV-file.  | 
         | 
    20   | 
         | 
    21 def get_january_data(symbol: String, year: Int) : List[String] =   | 
         | 
    22   Source.fromFile(symbol ++ ".csv")("ISO-8859-1").getLines.toList.filter(_.startsWith(year.toString)) | 
         | 
    23   | 
         | 
    24   | 
         | 
    25 //test cases  | 
         | 
    26 //blchip_portfolio.map(get_january_data(_, 2018))  | 
         | 
    27 //rstate_portfolio.map(get_january_data(_, 2018))  | 
         | 
    28   | 
         | 
    29 //get_january_data("GOOG", 1980) | 
         | 
    30 //get_january_data("GOOG", 2010) | 
         | 
    31 //get_january_data("FB", 2014) | 
         | 
    32   | 
         | 
    33 //get_january_data("PLD", 1980) | 
         | 
    34 //get_january_data("EQIX", 2010) | 
         | 
    35 //get_january_data("ESS", 2014) | 
         | 
    36   | 
         | 
    37   | 
         | 
    38 // (2) From the output of the get_january_data function, the next function   | 
         | 
    39 //     should extract the first line (if it exists) and the corresponding  | 
         | 
    40 //     first trading price in that year with type Option[Double]. If no line   | 
         | 
    41 //     is generated by get_january_data then the result is None; Some if   | 
         | 
    42 //     there is a price.  | 
         | 
    43   | 
         | 
    44 def get_first_price(symbol: String, year: Int) : Option[Double] = { | 
         | 
    45   val data = Try(Some(get_january_data(symbol, year).head)) getOrElse None   | 
         | 
    46   data.map(_.split(",").toList(1).toDouble) | 
         | 
    47 }  | 
         | 
    48   | 
         | 
    49 //test cases  | 
         | 
    50 //get_first_price("GOOG", 1980) | 
         | 
    51 //get_first_price("GOOG", 2010) | 
         | 
    52 //get_first_price("FB", 2014) | 
         | 
    53   | 
         | 
    54 /*  | 
         | 
    55 for (i <- 1978 to 2018) { | 
         | 
    56   println(blchip_portfolio.map(get_first_price(_, i)))  | 
         | 
    57 }  | 
         | 
    58   | 
         | 
    59 for (i <- 1978 to 2018) { | 
         | 
    60   println(rstate_portfolio.map(get_first_price(_, i)))  | 
         | 
    61 }  | 
         | 
    62 */   | 
         | 
    63   | 
         | 
    64   | 
         | 
    65 // (3) Complete the function below that obtains all first prices  | 
         | 
    66 //     for the stock symbols from a portfolio (list of strings) and   | 
         | 
    67 //     for the given range of years. The inner lists are for the  | 
         | 
    68 //     stock symbols and the outer list for the years.  | 
         | 
    69   | 
         | 
    70 def get_prices(portfolio: List[String], years: Range): List[List[Option[Double]]] =   | 
         | 
    71   for (year <- years.toList) yield  | 
         | 
    72     for (symbol <- portfolio) yield get_first_price(symbol, year)  | 
         | 
    73   | 
         | 
    74   | 
         | 
    75 //test cases  | 
         | 
    76   | 
         | 
    77 //println("Task 3 data from Google and Apple in 2010 to 2012") | 
         | 
    78 //val goog_aapl_prices = get_prices(List("GOOG", "AAPL"), 2010 to 2012) | 
         | 
    79 //println(goog_aapl_prices.toString ++ "\n")  | 
         | 
    80   | 
         | 
    81 //val p_fb = get_prices(List("FB"), 2012 to 2014) | 
         | 
    82 //val tt = get_prices(List("BIDU"), 2004 to 2008) | 
         | 
    83   | 
         | 
    84   | 
         | 
    85 // (4) The function below calculates the change factor (delta) between  | 
         | 
    86 //     a price in year n and a price in year n + 1.   | 
         | 
    87   | 
         | 
    88 def get_delta(price_old: Option[Double], price_new: Option[Double]) : Option[Double] = { | 
         | 
    89   (price_old, price_new) match { | 
         | 
    90     case (Some(x), Some(y)) => Some((y - x) / x)  | 
         | 
    91     case _ => None  | 
         | 
    92   }  | 
         | 
    93 }  | 
         | 
    94   | 
         | 
    95   | 
         | 
    96 // (5) The next function calculates all change factors for all prices (from a   | 
         | 
    97 //     portfolio). The input to this function are the nested lists created by   | 
         | 
    98 //     get_prices above.  | 
         | 
    99   | 
         | 
   100 def get_deltas(data: List[List[Option[Double]]]):  List[List[Option[Double]]] =  | 
         | 
   101   for (i <- (0 until (data.length - 1)).toList) yield   | 
         | 
   102     for (j <- (0 until (data(0).length)).toList) yield get_delta(data(i)(j), data(i + 1)(j))  | 
         | 
   103   | 
         | 
   104   | 
         | 
   105   | 
         | 
   106 // test case using the prices calculated above  | 
         | 
   107   | 
         | 
   108 //println("Task 5 change prices from Google and Apple in 2010 and 2011") | 
         | 
   109 //val goog_aapl_deltas = get_deltas(goog_aapl_prices)  | 
         | 
   110 //println(goog_aapl_deltas.toString ++ "\n")  | 
         | 
   111   | 
         | 
   112 //val ttd = get_deltas(tt)  | 
         | 
   113   | 
         | 
   114   | 
         | 
   115 // (6) Write a function that given change factors, a starting balance and an index,  | 
         | 
   116 //     calculates the yearly yield, i.e. new balance, according to our dumb investment   | 
         | 
   117 //     strategy. Index points to a year in the data list.  | 
         | 
   118   | 
         | 
   119 def yearly_yield(data: List[List[Option[Double]]], balance: Long, index: Int): Long = { | 
         | 
   120   val somes = data(index).flatten  | 
         | 
   121   val somes_length = somes.length  | 
         | 
   122   if (somes_length == 0) balance  | 
         | 
   123   else { | 
         | 
   124     val portion: Double = balance.toDouble / somes_length.toDouble  | 
         | 
   125     balance + (for (x <- somes) yield (x * portion)).sum.toLong  | 
         | 
   126   }  | 
         | 
   127 }  | 
         | 
   128   | 
         | 
   129 // test case using the deltas calculated above  | 
         | 
   130 //println("Task 6 yield from Google and Apple in 2010 with  balance 100") | 
         | 
   131   | 
         | 
   132 //val d0 = goog_aapl_deltas(0)(0)  | 
         | 
   133 //val d1 = goog_aapl_deltas(0)(1)  | 
         | 
   134 //println(s"50 * ${d0.get} + 50 * ${d1.get} = ${50.toDouble * d0.get + 50.toDouble * d1.get}") | 
         | 
   135   | 
         | 
   136   | 
         | 
   137 //val goog_aapl_yield = yearly_yield(goog_aapl_deltas, 100, 0)  | 
         | 
   138 //println("Rounded yield: " ++ goog_aapl_yield.toString ++ "\n") | 
         | 
   139   | 
         | 
   140   | 
         | 
   141 //yearly_yield(get_prices(rstate_portfolio, 2016 to 2018), 100, 2)   | 
         | 
   142 //get_prices(rstate_portfolio, 2016 to 2018)(2).flatten.sum  | 
         | 
   143   | 
         | 
   144   | 
         | 
   145 // (7) Write a function compound_yield that calculates the overall balance for a   | 
         | 
   146 //     range of years where in each year the yearly profit is compounded to the new   | 
         | 
   147 //     balances and then re-invested into our portfolio. For this use the function and   | 
         | 
   148 //     results generated under (6). The function investment calls compound_yield  | 
         | 
   149 //     with the appropriate deltas and the first index.  | 
         | 
   150   | 
         | 
   151   | 
         | 
   152 def compound_yield(data: List[List[Option[Double]]], balance: Long, index: Int): Long = { | 
         | 
   153   if (index >= data.length) balance else { | 
         | 
   154     val new_balance = yearly_yield(data, balance, index)  | 
         | 
   155     compound_yield(data, new_balance, index + 1)  | 
         | 
   156   }  | 
         | 
   157 }  | 
         | 
   158   | 
         | 
   159 def investment(portfolio: List[String], years: Range, start_balance: Long): Long = { | 
         | 
   160   compound_yield(get_deltas(get_prices(portfolio, years)), start_balance, 0)  | 
         | 
   161 }  | 
         | 
   162   | 
         | 
   163   | 
         | 
   164   | 
         | 
   165 //test cases for the two portfolios given above  | 
         | 
   166   | 
         | 
   167 //println("Real data: " + investment(rstate_portfolio, 1978 to 2019, 100)) | 
         | 
   168 //println("Blue data: " + investment(blchip_portfolio, 1978 to 2019, 100)) | 
         | 
   169   | 
         | 
   170 }  | 
         | 
   171   | 
         | 
   172   | 
         | 
   173   |