1 // Part 1 about finding anod counting Knight's tours |
|
2 //=================================================== |
|
3 |
|
4 |
|
5 |
|
6 type Pos = (Int, Int) |
|
7 type Path = List[Pos] |
|
8 |
|
9 def print_board(dim: Int, path: Path): Unit = { |
|
10 println |
|
11 for (i <- 0 until dim) { |
|
12 for (j <- 0 until dim) { |
|
13 print(f"${path.reverse.indexOf((i, j))}%3.0f ") |
|
14 } |
|
15 println |
|
16 } |
|
17 } |
|
18 |
|
19 def add_pair(x: Pos)(y: Pos): Pos = |
|
20 (x._1 + y._1, x._2 + y._2) |
|
21 |
|
22 def dist(dim: Int, y: Pos) = |
|
23 (dim / 2 - y._1).abs + (dim / 2 - y._2).abs |
|
24 |
|
25 def is_legal(dim: Int, path: Path)(x: Pos): Boolean = |
|
26 0 <= x._1 && 0 <= x._2 && x._1 < dim && x._2 < dim && !path.contains(x) |
|
27 |
|
28 def moves(x: Pos): List[Pos] = |
|
29 List(( 1, 2),( 2, 1),( 2, -1),( 1, -2), |
|
30 (-1, -2),(-2, -1),(-2, 1),(-1, 2)).map(add_pair(x)) |
|
31 |
|
32 def legal_moves(dim: Int, path: Path, x: Pos): List[Pos] = |
|
33 moves(x).filter(is_legal(dim, path)) |
|
34 |
|
35 |
|
36 def ordered_moves(dim: Int, path: Path, x: Pos): List[Pos] = |
|
37 legal_moves(dim, path, x).sortBy((x) => (legal_moves(dim, path, x).length, dist(dim, x))) |
|
38 |
|
39 |
|
40 //moves(8)(1,3) |
|
41 //ordered_moves(8)(Nil)(1,3) |
|
42 //ordered_moves(8)(List((2, 4), (2, 6)))(1,3) |
|
43 |
|
44 |
|
45 |
|
46 def count_tours(dim: Int, path: Path): Int = { |
|
47 if (path.length == dim * dim) 1 |
|
48 else |
|
49 (for (x <- legal_moves(dim, path, path.head)) yield count_tours(dim, x::path)).sum |
|
50 } |
|
51 |
|
52 def enum_tours(dim: Int, path: Path): List[Path] = { |
|
53 if (path.length == dim * dim) List(path) |
|
54 else |
|
55 (for (x <- legal_moves(dim, path, path.head)) yield enum_tours(dim, x::path)).flatten |
|
56 } |
|
57 |
|
58 def count_all_tours(dim: Int): Int = { |
|
59 (for (i <- (0 until dim).toList; |
|
60 j <- (0 until dim).toList) yield count_tours(dim, List((i, j)))).sum |
|
61 } |
|
62 |
|
63 def enum_all_tours(dim: Int): List[Path] = { |
|
64 (for (i <- (0 until dim).toList; |
|
65 j <- (0 until dim).toList) yield enum_tours(dim, List((i, j)))).flatten |
|
66 } |
|
67 |
|
68 /* |
|
69 for (dim <- 1 to 5) { |
|
70 println(s"${dim} x ${dim} " + count_all_tours(dim)) |
|
71 } |
|
72 |
|
73 for (dim <- 1 to 5) { |
|
74 val ts = enum_all_tours(dim) |
|
75 println(s"${dim} x ${dim} " + (if (ts == Nil) "" else { print_board(dim, ts.head) ; "" })) |
|
76 } |
|
77 */ |
|
78 |
|
79 |
|
80 def first(xs: List[Pos], f: Pos => Option[Path]): Option[Path] = xs match { |
|
81 case Nil => None |
|
82 case x::xs => { |
|
83 val result = f(x) |
|
84 if (result.isDefined) result else first(xs, f) |
|
85 } |
|
86 } |
|
87 |
|
88 |
|
89 |
|
90 def first_tour(dim: Int, path: Path): Option[Path] = { |
|
91 if (path.length == dim * dim) Some(path) |
|
92 else |
|
93 first(legal_moves(dim, path, path.head), (x: Pos) => first_tour(dim, x::path)) |
|
94 } |
|
95 |
|
96 for (dim <- 1 to 8) { |
|
97 val t = first_tour(dim, List((0, 0))) |
|
98 println(s"${dim} x ${dim} " + (if (t == None) "" else { print_board(dim, t.get) ; "" })) |
|
99 } |
|
100 |
|
101 |
|
102 /* |
|
103 def first2[A, B](xs: List[A], f: A => Option[B]): Option[B] = |
|
104 xs.par.flatMap(f(_)).headOption |
|
105 */ |
|
106 |
|
107 def first_closed_tour_heuristics(dim: Int, path: Path): Option[Path] = { |
|
108 if (path.length == dim * dim && moves(path.head).contains(path.last)) Some(path) |
|
109 else |
|
110 first(ordered_moves(dim, path, path.head), (x: Pos) => first_closed_tour_heuristics(dim, x::path)) |
|
111 } |
|
112 |
|
113 |
|
114 for (dim <- 1 to 6) { |
|
115 val t = first_closed_tour_heuristics(dim, List((dim / 2, dim / 2))) |
|
116 println(s"${dim} x ${dim} closed: " + (if (t == None) "" else { print_board(dim, t.get) ; "" })) |
|
117 } |
|
118 |
|
119 |
|
120 def first_tour_heuristics(dim: Int, path: Path): Option[Path] = { |
|
121 if (path.length == dim * dim) Some(path) |
|
122 else |
|
123 first(ordered_moves(dim, path, path.head), (x: Pos) => first_tour_heuristics(dim, x::path)) |
|
124 } |
|
125 |
|
126 /* |
|
127 for (dim <- 1 to 50) { |
|
128 val t = first_tour_heuristics(dim, List((dim / 2, dim / 2))) |
|
129 println(s"${dim} x ${dim}: " + (if (t == None) "" else { print_board(dim, t.get) ; "" })) |
|
130 } |
|
131 */ |
|
132 |
|