Attic/knight3_sol.scala
changeset 468 0587ef444547
parent 66 3506b681c191
equal deleted inserted replaced
467:9b5165b8a762 468:0587ef444547
       
     1 // Part 3 about finding a single tour using the Warnsdorf Rule
       
     2 //=============================================================
       
     3 
       
     4 
       
     5 type Pos = (Int, Int)
       
     6 type Path = List[Pos]
       
     7 
       
     8 def print_board(dim: Int, path: Path): Unit = {
       
     9   println
       
    10   for (i <- 0 until dim) {
       
    11     for (j <- 0 until dim) {
       
    12       print(f"${path.reverse.indexOf((i, j))}%3.0f ")
       
    13     }
       
    14     println
       
    15   } 
       
    16 }
       
    17 
       
    18 def add_pair(x: Pos)(y: Pos): Pos = 
       
    19   (x._1 + y._1, x._2 + y._2)
       
    20 
       
    21 def is_legal(dim: Int, path: Path)(x: Pos): Boolean = 
       
    22   0 <= x._1 && 0 <= x._2 && x._1 < dim && x._2 < dim && !path.contains(x)
       
    23 
       
    24 def moves(x: Pos): List[Pos] = 
       
    25   List(( 1,  2),( 2,  1),( 2, -1),( 1, -2),
       
    26        (-1, -2),(-2, -1),(-2,  1),(-1,  2)).map(add_pair(x))
       
    27 
       
    28 def legal_moves(dim: Int, path: Path, x: Pos): List[Pos] = 
       
    29   moves(x).filter(is_legal(dim, path))
       
    30 
       
    31 def ordered_moves(dim: Int, path: Path, x: Pos): List[Pos] = 
       
    32   legal_moves(dim, path, x).sortBy((x) => legal_moves(dim, path, x).length)
       
    33 
       
    34 import scala.annotation.tailrec
       
    35 
       
    36 /*
       
    37 @tailrec
       
    38 def first(xs: List[Pos], f: Pos => Option[Path]): Option[Path] = xs match {
       
    39   case Nil => None
       
    40   case x::xs => {
       
    41     val result = f(x)
       
    42     if (result.isDefined) result else first(xs, f)
       
    43   }
       
    44 }
       
    45 */
       
    46 
       
    47 def first[A, B](xs: List[A], f: A => Option[B]): Option[B] =
       
    48   xs.flatMap(f(_)).headOption
       
    49 
       
    50 
       
    51 def first_closed_tour_heuristics(dim: Int, path: Path): Option[Path] = {
       
    52   if (path.length == dim * dim && moves(path.head).contains(path.last)) Some(path)
       
    53   else
       
    54     first(ordered_moves(dim, path, path.head), (x: Pos) => first_closed_tour_heuristics(dim, x::path))
       
    55 }
       
    56 
       
    57 /*
       
    58 for (dim <- 1 to 6) {
       
    59   val t = first_closed_tour_heuristics(dim, List((dim / 2, dim / 2)))
       
    60   println(s"${dim} x ${dim} closed: " + (if (t == None) "" else { print_board(dim, t.get) ; "" }))
       
    61 }
       
    62 */
       
    63 
       
    64 //@tailrec
       
    65 def first_tour_heuristics(dim: Int, path: Path): Option[Path] = {
       
    66 
       
    67   @tailrec
       
    68   def aux(dim: Int, path: Path, moves: List[Position]): Option[Path 
       
    69   if (path.length == dim * dim) Some(path)
       
    70   else
       
    71     moves match {
       
    72       case Nil => None
       
    73       case x::xs => {
       
    74         val r = first_tour_heuristics(dim, x::path)
       
    75         if (r.isDefined) Some(r) else aux(dim, path, xs)
       
    76     }    
       
    77   aux(dim, path, ordered_moves(dim, path, path.head)) 
       
    78 }
       
    79 
       
    80 
       
    81 /*
       
    82 def first_tour_heuristics(dim: Int, path: Path): Option[Path] = {
       
    83   if (path.length == dim * dim) Some(path)
       
    84   else
       
    85     for (p <- ordered_moves(dim, path, path.head))
       
    86       val r = first_tour_heuristics(dim, x::path)
       
    87     //first(ordered_moves(dim, path, path.head), (x: Pos) => first_tour_heuristics(dim, x::path))
       
    88     ordered_moves(dim, path, path.head).view.flatMap((x: Pos) => first_tour_heuristics(dim, x::path)).headOption
       
    89 }
       
    90 */ 
       
    91 
       
    92 /*
       
    93 for (dim <- 1 to 50) {
       
    94   val t = first_tour_heuristics(dim, List((dim / 2, dim / 2)))
       
    95   println(s"${dim} x ${dim}: " + (if (t == None) "" else { print_board(dim, t.get) ; "" }))
       
    96 }
       
    97 */
       
    98 
       
    99 print_board(50, first_tour_heuristics(50, (25,25)::Nil).get)