Attic/knight2_sol.scala
changeset 468 0587ef444547
parent 86 f8a781322499
equal deleted inserted replaced
467:9b5165b8a762 468:0587ef444547
       
     1 // Part 2 about finding a single tour for a board
       
     2 //================================================
       
     3 
       
     4 type Pos = (Int, Int)    // a position on a chessboard 
       
     5 type Path = List[Pos]    // a path...a list of positions
       
     6 
       
     7 def print_board(dim: Int, path: Path): Unit = {
       
     8   println
       
     9   for (i <- 0 until dim) {
       
    10     for (j <- 0 until dim) {
       
    11       print(f"${path.reverse.indexOf((i, j))}%3.0f ")
       
    12     }
       
    13     println
       
    14   } 
       
    15 }
       
    16 
       
    17 def add_pair(x: Pos)(y: Pos): Pos = 
       
    18   (x._1 + y._1, x._2 + y._2)
       
    19 
       
    20 def is_legal(dim: Int, path: Path)(x: Pos): Boolean = 
       
    21   0 <= x._1 && 0 <= x._2 && x._1 < dim && x._2 < dim && !path.contains(x)
       
    22 
       
    23 def moves(x: Pos): List[Pos] = 
       
    24   List(( 1,  2),( 2,  1),( 2, -1),( 1, -2),
       
    25        (-1, -2),(-2, -1),(-2,  1),(-1,  2)).map(add_pair(x))
       
    26 
       
    27 def legal_moves(dim: Int, path: Path, x: Pos): List[Pos] = 
       
    28   moves(x).filter(is_legal(dim, path))
       
    29 
       
    30 
       
    31 def first(xs: List[Pos], f: Pos => Option[Path]): Option[Path] = xs match {
       
    32   case Nil => None
       
    33   case x::xs => {
       
    34     val result = f(x)
       
    35     if (result.isDefined) result else first(xs, f)
       
    36   }
       
    37 }
       
    38 
       
    39 first(List((1, 0),(2, 0),(3, 0),(4, 0)), (x => if (x._1 > 3) Some(List(x)) else None))
       
    40 first(List((1, 0),(2, 0),(3, 0)), (x => if (x._1 > 3) Some(List(x)) else None))
       
    41 
       
    42 
       
    43 
       
    44 def first_tour(dim: Int, path: Path): Option[Path] = {
       
    45   if (path.length == dim * dim) Some(path)
       
    46   else
       
    47     first(legal_moves(dim, path, path.head), (x: Pos) => first_tour(dim, x::path))
       
    48 }
       
    49 
       
    50 /*
       
    51 for (dim <- 1 to 8) {
       
    52   val t = first_tour(dim, List((0, 0)))
       
    53   println(s"${dim} x ${dim} " + (if (t == None) "" else { print_board(dim, t.get) ; "" }))
       
    54 }
       
    55 */
       
    56 
       
    57 def add_pair_urban(x: Pos)(y: Pos): Pos = 
       
    58   (x._1 + y._1, x._2 + y._2)
       
    59 
       
    60 def is_legal_urban(dim: Int, path: Path)(x: Pos): Boolean = 
       
    61   0 <= x._1 && 0 <= x._2 && x._1 < dim && x._2 < dim && !path.contains(x)
       
    62 
       
    63 def moves_urban(x: Pos): List[Pos] = 
       
    64   List(( 1,  2),( 2,  1),( 2, -1),( 1, -2),
       
    65        (-1, -2),(-2, -1),(-2,  1),(-1,  2)).map(add_pair_urban(x))
       
    66 
       
    67 def legal_moves_urban(dim: Int, path: Path, x: Pos): List[Pos] = 
       
    68   moves_urban(x).filter(is_legal_urban(dim, path))
       
    69 
       
    70 def correct_urban(dim: Int)(p: Path): Boolean = p match {
       
    71   case Nil => true
       
    72   case x::Nil => true
       
    73   case x::y::p => 
       
    74     if (legal_moves_urban(dim, p, y).contains(x)) correct_urban(dim)(y::p) else false
       
    75 }
       
    76 
       
    77 
       
    78 
       
    79  
       
    80 val ts1 = first_tour(8, List((0, 0))).get
       
    81   assert(correct_urban(8)(ts1) == true)
       
    82 
       
    83 val ts2 = first_tour(4, List((0, 0)))
       
    84 assert(ts2 == None)  
       
    85 
       
    86 print_board(8, first_tour(8, List((0, 0))).get)
       
    87 
       
    88