A Crash-Course in Scala

“Scala — Slowly compiled academic language”
— a joke(?) found on Twitter

“Life is too short for malLoc.”
— said Neal Ford at Oscon’13 &

Introduction

Scala is a programming language that combines functional and object-oriented
programming-styles. It has received quite a bit of attention in the last ten or
so years. One reason for this attention is that, like the Java programming lan-
guage, Scala compiles to the Java Virtual Machine (JVM) and therefore Scala
programs can run under MacOSX, Linux and Windows. Because of this it has
also access to the myriads of Java libraries. Unlike Java, however, Scala often
allows programmers to write very concise and elegant code. Some therefore
say “Scala is the better Java”.!

A number of companies—the Guardian, Duolingo, Coursera, FourSquare,
Netflix, LinkedIn, ITV, Disney to name a few —either use Scala exclusively in
production code, or at least to some substantial degree. Scala seems also useful
in job-interviews (especially in data science) according to this anecdotal report

http://techcrunch.com/2016/06/14/scala-is-the-new-golden-child
The official Scala web-page is here:

http://www.scala-lang.org

For PEP, make sure you are using the version 3(!) of Scala. This is the version I
am going to use in the lectures and in the coursework. This can be any version
of Scala 3.X where X = {4,5}. Also the minor number does not matter. Note
that this will be the second year I am using this newer version of Scala — some
hiccups can still happen. Apologies in advance!

If you are interested, there are also experimental backends for Scala for gen-
erating JavaScript code (https://www.scala-js.org), and there is work un-
der way to have a native Scala compiler generating X86-code (http://www.
scala-native.org). There are also some tricks for Scala programs to run as
a native GraalVM K? image. Though be warned these backends are still rather
beta or even alpha.

© Christian Urban, King’s College London, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024
Ifrom https://www.slideshare.net/maximnovak/joy-of-scala, though this might be out-
dated as latest versions of Java are catching up somewhat

https://www.youtube.com/watch?v=7aYS9PcAITQ
http://techcrunch.com/2016/06/14/scala-is-the-new-golden-child
http://www.scala-lang.org
https://www.scala-js.org
http://www.scala-native.org
http://www.scala-native.org
https://scala-cli.virtuslab.org/docs/cookbooks/native-images/
https://www.slideshare.net/maximnovak/joy-of-scala

o
P Ltz

http_pattern = "

%

©040 ©scals | crawlertscala In12,Col2 Spoces:2 UTF-8 LF Scals @ A

Figure 1: My installation of VS Code / Codium includes the package Scala
Syntax (official) 0.5.7 from Marketplace. I have also bound the keys
to the action “Run-Selected-Text-In-Active-Terminal” in order to quickly eval-
uate small code snippets in the Scala REPL. I use Codium’s internal terminal
to run scala version 1.0.5 which uses Scala 3.3.1.

VS Code and Scala

I found a convenient IDE for writing Scala programs is Microsoft’s Visual Studio
Code (VS Code) which runs under MacOSX, Linux and obviously Windows.? Tt
can be downloaded for free from

https://code.visualstudio.com

and should already come pre-installed in the Department (together with the
Scala compiler). Being a project that just started in 2015, VS Code is relatively
new and therefore far from perfect. However it includes a Marketplace from
which a multitude of extensions can be downloaded that make editing and run-
ning Scala code a little easier (see Figure 1 for my setup).

Actually last year I switched to VS Codium as IDE for writing Scala pro-
grams. VS Codium is VS Code minus all the telemetry data that is normally
sent to Microsoft. Apart from the telemetry (and Copilot, which you are not
supposed to use anyway), it works pretty much the same way as the original
but is driven by a dedicated community, rather than a big company. You can
download VS Codium from

https://vscodium.com

2...unlike Microsoft Visual Studio—note the minuscule difference in the name—which is a heavy-

duty, Windows-only IDE...jeez, with all their money could they not have come up with a com-
pletely different name for a complete different project? For the pedantic, Microsoft Visual Studio
is an IDE, whereas Visual Studio Code is considered to be a source code editor. Anybody out there
knows what the difference is?

https://code.visualstudio.com
https://vscodium.com

What I like most about VS Code/Codium is that it provides easy access to
any Scala REPL. But if you prefer another editor for coding, it is also painless
to work with Scala completely on the command line (as you might do with
g++ in the second part of PEP). For the lazybones among us, there are even
online editors and environments for developing and running Scala programs:
for example Scastie is one of them. It requires zero setup (assuming you have a
browser handy). You can access it at

https://scastie.scala-lang.org

But you should be careful if you use them for your coursework: they are meant
to play around, not really for serious work. Therefore make sure scala works
on your own machine ASAP!

As one might expect, Scala can be used with the heavy-duty IDEs Eclipse
and Intelli]. For example Intelli] includes plugins for Scala

https://scalacenter.github.io/bloop/docs/ides/intellij

BUT, I do not recommend the usage of either Eclipse or Intelli] for PEP: for
the small programs that we will write in this module, these IDEs seem to make
your life harder, rather than easier. They are really meant to be used when
you have a million-lines codebase instead of our small “toy-programs”...for
example why on earth am I required to create a completely new project with
several subdirectories when I just want to try out 20-lines of Scala code? Your
mileage may vary though. ;o)

Why Functional Programming?

Before we go on, let me explain a bit more why we want to inflict upon you
another programming language. You hopefully have mastered Java and soon
will master C++ as well, you possibly know Python already... the world should
be your oyster, no? Well, as usual matters are not as simple as one might wish.
We do require Scala in PEP, but actually we do not religiously care whether
you learn Scala—after all it is just a programming language (albeit a nifty one
IMHO). What we do care about is that you learn about functional programming.
Scala is just the vehicle for that. Still, you need to learn Scala well enough to
get good marks in PEP, but functional programming could perhaps equally be
taught with Haskell, F#, SML, Ocaml, Kotlin, Clojure, Scheme, ElIm and many
other functional programming languages.

Very likely writing programs in a functional programming language is quite
different from what you are used to in your study so far. It might even be totally
alien to you. The reason is that functional programming seems to go against
the core principles of imperative programming (which is what you do in Java and
C/C++). The main idea of imperative programming is that you have some form
of state in your program and you continuously change this state by issuing some
commands—for example for updating a field in an array or for adding one to

https://scastie.scala-lang.org
https://scalacenter.github.io/bloop/docs/ides/intellij

a variable stored in memory and so on. The classic example for this style of
programming is a for-loop in say Java and C/C++. Consider the snippet:

for (int i = 10; i < 20; i++) {
//...do something with i...
}

Here the integer variable i embodies part of the state of the program, which is
first set to 10 and then increased by one in each loop-iteration until it reaches
20 at which point the loop exits. When this code is compiled and actually runs,
there will be some dedicated space reserved for i in memory. This space of
typically 32 bits contains i’s current value...10 at the beginning, and then the
content will be overwritten with new content in every iteration. The main point
here is that this kind of updating, or overwriting, of memory is 25.806...or THE
ROOT OF ALL EVIL!!

28,8
The reet of cll ewil

...Well, it is perfectly benign if you have a sequential program that gets run
instruction by instruction...nicely one after another. This kind of running code
uses a single core of your CPU and goes as fast as your CPU frequency, also
called clock-speed, allows. The problem is that this clock-speed has not much
increased over the past decade and no dramatic increases are predicted for any
time soon. So you are a bit stuck. This is unlike previous generations of devel-
opers who could rely upon the fact that approximately every 2 years their code
would run twice as fast because the clock-speed of their CPUs got twice as fast.

Unfortunately this does not happen any more nowadays. To get you out
of this dreadful situation, CPU producers pile more and more cores into CPUs
in order to make them more powerful and potentially make software faster.
The task for you as developer is to take somehow advantage of these cores
by running as much of your code as possible in parallel on as many cores
you have available (typically 4-8 or even more in modern laptops and some-
times much more on high-end machines—and we conveniently ignore here
how many cores are on modern GPUs, which can be hundreds or even thou-
sands). In this situation mutable variables like i in the for-loop above are evil,
or at least a major nuisance: Because if you want to distribute some of the loop-
iterations over several cores that are currently idle in your system, you need to
be extremely careful about who can read and overwrite the variable i.> Espe-
cially the writing operation is critical because you do not want that conflicting
writes mess about with i. Take my word: an untold amount of misery has

31f you are of the mistaken belief that nothing nasty can happen to i inside the for-loop, then
you will have to be extra careful with the C++ material.

arisen from this problem. The catch is that if you try to solve this problem in
languages like C/C++ or Java, and be as defensive as possible about reads and
writes to i, then you need to synchronise access to it. The result is that very of-
ten your program waits more than it runs, thereby defeating the point of trying
to run the program in parallel in the first place. If you are less defensive, then
usually all hell breaks loose by seemingly obtaining random results. And for-
get the idea of being able to debug such code. If you want to watch a 5-minute
video of horror stories, feel free to follow ... &7 & (I love the fact, he says at
4:02 mins that he does not understand how the JVM really works... I always
assumed I am the only idiot who does not understand how threads work on
the JVM. Apparently not. But the point is that I am a functional programmer: I
do not care — I do not have to understand them.)

The central idea of functional programming is to eliminate any state and all
mutable variables from programs—or at least from the “interesting bits” of the
programs. Because then it is easy to parallelise the resulting programs: if you
do not have any state, then once created, all memory content stays unchanged
and reads to such memory are absolutely safe without the need of any synchro-
nisation. An example is given in Figure 2 where in the absence of the annoying
state, Scala makes it very easy to calculate the Mandelbrot set on as many cores
of your CPU as possible. Why is it so easy in this example? Because each pixel
in the Mandelbrot set can be calculated independently and the calculation does
not need to update any variable. It is so easy in fact that going from the sequen-
tial version of the Mandelbrot program to the parallel version can be achieved
by adding just eight characters—in two places you have to add .par. Try the
same in C/C++ or Java!

But remember this easy parallelisation of code requires that we have no state
in our programs...that is no counters like i in for-loops. You might then ask,
how do I write loops without such counters? Well, teaching you that this is
possible is one of the main points of the Scala-part in PEP. I can assure you it
is possible, but you have to get your head around it. Once you have mastered
this, it will be fun to have no state in your programs (a side product is that it
much easier to debug state-less code and it is also more often than not easier to
understand). So have fun with Scala!*

If you need any after-work distractions, you might have fun reading the fol-

41 you are still not convinced about the function programming “thing”, there are a few more ar-
guments: alot of research in programming languages happens to take place in functional program-
ming languages. This has resulted in ultra-useful features such as pattern-matching, strong type-
systems, laziness, implicits, algebraic datatypes to name a few. Imperative languages seem to often
lag behind in adopting them: I know, for example, that Java will at some point in the future sup-
port pattern-matching, which has been used for example in SML for at least 40(!) years. See https:
//openjdk.org/projects/amber/design-notes/patterns/pattern-matching-for-java. Auto-
matic garbage collection was included in Java in 1995; the functional language LISP had this al-
ready in 1958. Generics were added to Java 5 in 2004; the functional language SML had it since
1990. Higher-order functions were added to C# in 2007, to Java 8 in 2014; again LISP had them
since 1958. Also Rust, a C-like programming language that has been developed since 2010 and is
gaining quite some interest, borrows many ideas from functional programming from yesteryear.

https://www.youtube.com/watch?v=LdLUgCJkiHY
https://openjdk.org/projects/amber/design-notes/patterns/pattern-matching-for-java
https://openjdk.org/projects/amber/design-notes/patterns/pattern-matching-for-java

A Scala program for generating pretty pictures of the Mandelbrot set.

(See https://en.wikipedia.org/wiki/Mandelbrot_set or
https://www.youtube.com/watch?v=aSg2Db3jF_4):

sequential version:

for (y <- (© until H)) { for (y <- (@ until H).par) {
for (x <- (@ until W)) { for (x <- (@ until W).par) {
val ¢ = start + val ¢ = start +
(x * d x +y *dy*i) (x *d x +y *dy* i)
val iters = iterations(c, max) val iters = iterations(c, max)
val colour = val colour =
if (iters == max) black if (iters == max) black
else colours(iters % 16) else colours(iters % 16)
pixel(x, y, colour) pixel(x, y, colour)
¥ }
viewer.updateUI() viewer.updateUI()
} ¥
CPULOAD CPU LOAD

N o ALL

Figure 2: The code of the two “main” loops in my version of the mandel-
brot program. The parallel version differs only in .par being added to the
“ranges” of the x and y coordinates. As can be seen from the CPU loads, in
the sequential version there is a lower peak for an extended period, while in
the parallel version there is a short sharp burst for essentially the same work-
load...meaning you get more work done in a shorter amount of time. This
easy parallelisation only works reliably with immutable programs.

6

https://en.wikipedia.org/wiki/Mandelbrot_set
https://www.youtube.com/watch?v=aSg2Db3jF_4

lowing article about FP (functional programming) — you might have to disable
your browser cookies though if you want to read it for free. And spoiler alert:
This is tongue-in-cheek ;0)

https://archive.ph/vrofC

Relevant xkcd entries about functional programming are XXX.

The Very Basics

Let us get back to Scala: One advantage of Scala over Java is that it includes an
interpreter (a REPL, or Read-Eval-Print-Loop) with which you can run and test
small code snippets without the need of a compiler. This helps a lot with in-
teractively developing programs. It is my preferred way of writing small Scala
programs. Once you installed scala, you can start the interpreter by typing on
the command line:

$ scala
Welcome to Scala 3.5.1 (21.0.4, Java Open]DK 64-Bit Server VM).
Type in expressions for evaluation. Or try :help.

scala>

The precise response may vary depending on the version and platform where
you installed scala. Make sure however that scala uses version 3—you can
find the version number in the welcome message. Also note that at the first
time scala runs, it might download various components, for example the Scala
compiler, Scala runtimes etc. Once scala is up and running, you can type at

the prompt expressions like 2 + 3 and the output will be

scala> 2 + 3
val res@®: Int = 5

The answer means that he result of the addition is of type Int and the actual
result is 5; res@ is a name that Scala gives automatically to the result. You can
reuse this name later on, for example

scala> reso + 4
val resl: Int = 9

Another classic example you can try out is

scala> println("hello world")
hello world

Note that in this case there is no result! The reason is that println does not
actually produce a result (there is no resX and no type), rather it is a function
that causes the side-effect of printing out a string. Once you are more familiar
with the functional programming-style, you will know what the difference is
between a function that returns a result, like addition, and a function that causes
a side-effect, like print1n. We shall come back to this point later, but if you are

https://archive.ph/vrofC

curious now, the latter kind of functions always has Unit as return type. It is
just not printed by Scala.

You can try more examples with the scala REPL, but feel free to first guess
what the result is (not all answers by Scala are obvious):

scala> 2 2
scala>
scala>
scala>
scala>
scala> 0.0

scala> true == false

scala> true && false

scala> 1 > 1.0

scala> "12345".length

scala> List(1,2,1).size

scala> Set(1,2,1).size

scala> List(1) == List(1)

scala> Array(1) == Array(1)

scala> Array(1l).sameElements(Array (1))
scala> 0.1 + 0.2 == 0.3

PR R RPR

©® ~~ O~ +

~NO®ON~NN
®

If you think Scala’s answer in the last line is braindamaged, try the same in
your own favourite language. Also observe carefully what Scala responds in
the following three instances involving the constant 1 —can you explain the dif-
ferences?

scala> 1
scala> 1L
scala> 1F

Please take the Scala REPL seriously: If you want to take advantage of my ref-
erence implementation for the assignments, you will need to be able to “play
around” with it!

Standalone Scala Apps

If you want to write a standalone app in Scala, you can implement a function
hello and annotate the tag @main. For example write

@main

def Hello() = println("hello world")

save it in a file, say hello-world.scala, and then use scala (which compiles
the scala file and runs it):

$ scala hello-world.scala
hello world

Like Java, Scala targets the JVM and consequently Scala programs can also be
executed by the bog-standard Java Runtime. This can be done as follows:

$ scala --power package --assembly hello-world.scala
$ java -jar Hello.jar
hello world

Values

Do not use var in your code for PEP! This declares a mutable variable.
Only use val! This is for immutable values.

In the lectures I will try to avoid as much as possible the term variables familiar
from other programming languages. The reason is that Scala has values, which
can be seen as abbreviations of potentially larger expressions. The keyword for
defining values is val. For example

scala> val x = 42
val x: Int = 42

scala> val + 4
val y: Int

<
N
w

scala> val z = x / y
val z: Int = 6

As can be seen, we first define x and y with admittedly some silly expressions,
and then reuse these values in the definition of z. All easy, right? Why the
kerfuffle about values? Well, values are immutable. You cannot change their
value after you defined them. If you try to reassign z above, Scala will yell at
you:

scala> z = 9
-- [E@52] Type Error: -—---------mmmmm o m oo e e -
1]z=09

| AAAAN

|Reassignment to val z

1 error found

So it would be a bit absurd to call values as variables...you cannot change them;
they cannot vary. You might think you can reassign them like

scala> val x = 42
scala> val z = x / 7
scala> val x = 70
scala> println(z)

but try to guess what Scala will print out for z? Will it be 6 or 10? A final word
about values: Try to stick to the convention that names of values should be
lower case, like x, y, foo41 and so on. Upper-case names you should reserve for
what is called constructors. And forgive me when I call values as variables...it is
just something that has been in imprinted into my developer-DNA during my
early years and is difficult to get rid of. ;0)

Function Definitions

We do functional programming! So defining functions will be our main occu-
pation. As an example, a function named f taking a single argument of type
Int can be defined in Scala as follows:

def f(x: Int) : String = ...YOUR CODE...

This function returns the value resulting from evaluating the expression what
your code is. Since we declared String after the colon, the result of this function
will be of type String. It is a good habit to always include this information
about the return type, while it is only strictly necessary to give this type in
recursive functions (later more on that). Simple examples of Scala functions
are:

x
+
=

def incr(x: Int) : Int =
def double(x: Int) : Int
def square(x: Int) : Int = x * x

I
x
+
x

The general scheme for functions is

def fname(argl: tyl, arg2: ty2,..., argn: tyn): rty = {
...BODY_OF_FUNCTION...
}

where each argument, argl, arg2 and so on, requires its type and the result
type of the function, rty, should also be given. If the body of the function
is more complex, then it can be enclosed in braces, like above. If it is just a
simple expression, like x + 1, you can omit the braces. Very often functions
are recursive (that is call themselves), like the venerable factorial function:

def fact(n: Int) : Int =
if (n == @) 1 else n * fact(n - 1)

In this case we have to give the return type Int. But as said, it is a good habit
to give the return type for all functions. Note we could also have written this
with braces as
def fact(n: Int) : Int = {
if (n == @) 1
else n * fact(n - 1)
}

but this seems a bit overkill for a small function like fact. Notice that I did

10

not use a then-keyword in the if-statements and that I enclosed the condition
inside parentheses, like (n == 0). Your eyes might hurt to not see an then with
an if, but this has been long established syntax for if-statements. Scala, to my
knowledge, was pretty unique in that for nearly 20 years of its existence...until
Scala 3 came along. While people like me have perfectly adapted to the sight
of ifs without thens, it seems the developers of Scala caved in to the special
eyesight of Gen-Python people (I am sure that is not you) and now allow to
write the same function also as

def fact(n: Int) : Int = {
if n == @ then 1
else n * fact(n - 1)

}

The main difference between both versions is that if you want to drop the then,
then you need to enclose the boolean expression within parentheses. I accept
the second version might look a bit more familiar to beginners of Scala, if they
come from other languages, like Python, Java or C++. But that we also had to
get rid in Scala 3 of the familiar {}-parentheses is completely beyond me. So in
Scala 3 the braces are optional and the fact-function can even be written as

def fact(n: Int) : Int =
if n ==
then 1
else n * fact(n - 1)

on the condition that indents now become meaningful (as in Python). & All ver-
sions are now permitted in Scala 3. While you are free to use any syntax version
you want in PEP, or even mix them, I will not show you any of my code in the
newfangled Pythonesque meaningful-indent-syntax. When necessary, I will al-
ways use braces to indicate the beginning and end of a code block, and I have
not yet completely got used to the ifs with thens. Please forgive me for being
still inconsistent with this®

However, no matter which syntax style you adopt for ifs, never write an if
without an else-branch! That has something to do with functional program-
ming and you will see its purpose later on. Coming back to function definitions:
While def is the main mechanism for defining functions, there are a few other
ways for doing this. We will see some of them in the next sections.

Before we go on, let me explain one tricky point in function definitions, es-
pecially in larger definitions. What does a Scala function return as result? Scala
has a return keyword, but it is used for something different than in Java (and
C/C++). Therefore please make sure no return slips into your Scala code.

So in the absence of return, what value does a Scala function actually pro-
duce? A rule-of-thumb is whatever is in the last line of the function is the value

5Scala adopted some very fine features of Python, for example string interpolations, but that
we had to completely cave in to the demands of Gen-Python is a bridge too far for my completely
insignificant opinion. I always assumed escaping Python’s dependency hell is every software de-

velopers life goal —apparently not. &

11

that will be returned. Consider the following example:®

def average(xs: List[Int]) : Int = {
val s = xs.sum
val n = xs.length
s/ n

}

In this example the expression s / nis in the last line of the function—so this
will be the result the function calculates. The two lines before just calculate
intermediate values. This principle of the “last-line” comes in handy when you
need to print out values, for example, for debugging purposes. Suppose you
want rewrite the average function as

def average(xs: List[Int]) : Int = {
val s = xs.sum
val n = xs.length
val h = xs.head
println(s"Input $xs with first element $h")
s/ n

}

Here the function still only returns the expression s / n in the last line. The
println before just prints out some information about the input of this func-
tion, but does not contribute to the result of the function. Similarly, the value
h is used in the println but does not contribute to what integer is returned by
the function.

A caveat is that the idea with the “last line” is only a rough rule-of-thumb.
A better rule might be: the last expression that is evaluated in the function.
Consider the following version of average:

def average(xs: List[Int]) : Int = {
if (xs.length == 0) ©
else xs.sum / xs.length

}

What does this function return? Well there are two possibilities: either the re-
sult of xs.sum / xs.length in the last line provided the list xs is nonempty,
or if the list is empty, then it will return @ from the if-branch (which is techni-
cally not the last line, but the last expression evaluated by the function in the
empty-case).

Summing up, do not use return in your Scala code! A function returns
what is evaluated by the function as the last expression. There is always only
one such last expression. Previous expressions might calculate intermediate
values, but they are not returned. If your function is supposed to return mul-
tiple things, then one way in Scala is to use tuples. For example returning the

®We could have written this function in just one line, but for the sake of argument let’s keep the
two intermediate values.

12

minimum, average and maximum can be achieved by

def avr_minmax(xs: List[Int]) : (Int, Int, Int) = {
if (xs.length == @) (@, 0, 0)
else (xs.min, xs.sum / xs.length, xs.max)

}

which still satisfies the rule-of-thumb: The result of the function is the last ex-
pression that is run inside the function.

Do not use return in your code to indicate what a function produces as
a result! It has a different meaning in Scala than in Java. It can change
the meaning of your program, and you should never use it.

Loops, or Better the Absence Thereof

Coming from Java or C/C++, you might be surprised that Scala does not really
have loops. It has instead, what is in functional programming called, maps. To
illustrate how they work, let us assume you have a list of numbers from 1 to 8
and want to build the list of corresponding squares. The list of numbers from
1 to 8 can be constructed in Scala as follows:

scala> (1 to 8).tolist
val resl: List[Int] = List(2, 2, 3, 4, 5, 6, 7, 8)

Like in modern versions of Java, the 1 to 8 generates a Range, which is then
transformed into a list by the .toList. Generating from this list the list of
squares in an imperative programming language such as C++, you would as-
sume the listis given as a kind of array. You would then iterate, or loop, an index
over this array and replace each entry in the array by its square. Right? In Scala,
and in other functional programming languages, you use maps to achieve the
same.

A map essentially takes a function that describes how each element is trans-
formed (in this example the function is n — 1 * n) and a list over which this
function should work. Pictorially you can think of the idea behind maps as
follows:

List(1, 2, 3, 4, 5, 6, 7, 8)
n
Y \\,\,\,\,
n*n
List(1, 4, 9, 16, 25, 36, 49, 64)

13

On top is the “input” list we want to transform; on the left is the “map” func-
tion for how to transform each element in the input list (the square function in
this case); at the bottom is the result list of the map. This means that a map
generates a new list, unlike a for-loop in Java or C/C++ which would most likely
just update the existing list/array.

Now there are two ways for expressing such maps in Scala. The first way
is called a for-comprehension. The keywords are for and yield. Squaring the
numbers from 1 to 8 with a for-comprehension would look as follows:

scala> for (n <- (1 to 8).tolList) yield n * n
val res2: List[Int] = List(1, 4, 9, 16, 25, 36, 49, 64)

This for-comprehension states that from the list of numbers we draw some el-
ements. We use the name n to range over these elements (whereby the name
is arbitrary; we could use something more descriptive if we wanted to). Using
n we compute the result of n * n after the yield. This way of writing a map
resembles a bit the for-loops from imperative languages, even though the ideas
behind for-loops and for-comprehensions are quite different. Also, this is a sim-
ple example —what comes after yield can be a complex expression enclosed in
{...}. Amore complicated example might be

scala> for (n <- (1 to 8).tolList) yield {
val i = n + 1
val j = n -1
i*j+1
}
val res3: List[Int] = List(1, 4, 9, 16, 25, 36, 49, 64)

Let us come back to the simple example of squaring a list of numbers from
above. As you can see in the for-comprehensions, we specified the list where
each n comes from, namely (1 to 8).toList, and how each element needs to
be transformed, the expression after the yield. This can also be expressed in a
second way in Scala by using directly the function map as follows:

scala> (1 to 8).toList.map(n => n * n)
val res3 = List(1, 4, 9, 16, 25, 36, 49, 64)

In this way, the expression n => n * n stands for the function that calculates
the square (this is how the ns are transformed by the map). It might not be obvi-
ous, but the for-comprehensions above are just syntactic sugar: when compil-
ing such code, Scala translates for-comprehensions into equivalent maps. This
even works when for-comprehensions get more complicated (see below).

The very charming feature of Scala is that such maps or for-comprehensions
can be written for any kind of data collection, such as lists, sets, vectors, options
and so on. For example if we instead compute the remainders modulo 3 of this
list, we can write

scala> (1 to 8).toList.map(n => n % 3)
val res4 = List(1, 2, 0, 1, 2, 0, 1, 2)

14

If we, however, transform the numbers 1 to 8 not into a list, but into a set, and
then compute the remainders modulo 3 we obtain

scala> (1 to 8).toSet.map(n => n % 3)
val res5 = Set(2, 1, @)

This” is the correct result for sets, as there are only three equivalence classes
of integers modulo 3. Since maps and for-comprehensions are just syntactic
variants of each other, the latter can also be written as

scala> for (n <- (1 to 8).toSet) yield n % 3
val res5 = Set(2, 1, ©0)

For-comprehensions can also be nested and the selection of elements can be
guarded (or filtered). For example if we want to pair up the numbers 1 to 4 with
the letters a to ¢, we can write

scala> for (n <- (1 to 4).tolList;
m<- ('a'" to 'c').toList) yield (n, m)
val resé = LiSt((l)a)) (1,b), (llc)) (2,3), (Z,b), (Z)C))
(3,a), (3,b), (3,¢c), (4,a), (4,b), (4,c))

In this example the for-comprehension ranges over two lists, and produces a
list of pairs as output. Or, if we want to find all pairs of numbers between 1 and
3 where the sum is an even number, we can write

scala> for (n <- (1 to 3).tolList;
m <- (1 to 3).tolList;
if (n + m) % 2 == @) yield (n, m)
val res7 = List((1,1), (1,3), (2,2), (3,1), (3,3))

The if-condition in this for-comprehension filters out all pairs where the sum
is not even (therefore (1, 2), (2, 1) and (3, 2) are not in the result because
their sum is odd).

To summarise, maps (or for-comprehensions) transform one collection into
another. For example a list of Ints into a list of squares, and so on. There is no
need for for-loops in Scala. But please do not be tempted to write anything like

scala> val cs = ('a' to 'h').tolList
scala> for (n <- (@ until cs.length).tolList)
yield cs(n).capitalize
val res8: List[Char] = List(A, B, C, D, E, F, G, H)

This is accepted Scala-code, but utterly bad style (it is more like Java). It can be
written much clearer as:

scala> val c¢s = ('a' to 'h').tolList
scala> for (c <- cs) yield c.capitalize
val res9: List[Char] = List(A, B, C, D, E, F, G, H)

7This returns actually HashSet(1, 2, 3), but this is just an implementation detail of how sets
are implemented in Scala.

15

Results and Side-Effects

While hopefully all this about maps looks reasonable, there is one complication:
In the examples above we always wanted to transform one list into another list
(e.g. list of squares), or one set into another set (set of numbers into set of re-
mainders modulo 3). What happens if we just want to print out a list of integers?
In these cases the for-comprehensions need to be modified. The reason is that
print, you guessed it, does not produce any result, but only produces what
is in the functional-programming-lingo called a side-effect...it prints something
out on the screen. Printing out the list of numbers from 1 to 5 would look as
follows

scala> for (n <- (1 to 5).toList) print(n)
12345

where you need to omit the keyword yield. You can also do more elaborate
calculations before printing such as

scala> for (n <- (1 to 5).toList) {
val square = n * n
println(s"$n * $n = $square™)

}

1*1=1

2 2 =4

3*%3=09

4 * 4 = 16

5 *% 5 =25
In this code I use a value assignment (val square = ...) and also what is
called in Scala a string interpolation, written s"...". The latter is for printing

out formatted strings. It allows me to refer to the integer values n and square
inside a string. This is very convenient for printing out “things”.

The corresponding map construction for functions with side-effects is in
Scala called foreach. So you could also write

scala> (1 to 5).toList.foreach(n => print(n))
12345

or even just

scala> (1 to 5).toList.foreach(print)
12345

If you want to find out more about maps and functions with side-effects, you
can ponder about the response Scala gives if you replace foreach by map in the
expression above. Scala will still allow map with side-effect functions, but then
reacts with a slightly interesting result. If you understand the difference, you
are pretty much on the road of becoming a master-functional programmer.

16

Aggregates

There is one more usage of for-loops in Java, C/C++ and the like: sometimes
you want to aggregate something about a list, for example summing up all its
elements. In this case you cannot use maps, because maps transform one data
collection into another data collection. They cannot be used to generate a single
integer representing an aggregate. So how is this kind of aggregation done in
Scala? Let us suppose you want to sum up all elements from a list. You might
be tempted to write something like

var cnt = ©
for (n <- (1 to 8).tolList) {
cnt += n

}
print(cnt)

and indeed this is accepted Scala code and produces the expected result, namely
36, BUT this is imperative style and not permitted in PEP. If you submit this
kind of code, you get 0 marks. The code uses a var and therefore violates the
immutability property I ask for in your code. Sorry!

So how to do that same thing without using a var? Well there are several
ways. One way is to define the following recursive sum-function:

def sum(xs: List[Int]) : Int =
if (xs.isEmpty) © else xs.head + sum(xs.tail)

You can then call sum((1 to 8).toList) and obtain the same result without a
mutable variable and without a for-loop. Obviously for simple things like sum,
you could have written xs . sum in the first place. But not all aggregate functions
are pre-defined and often you have to write your own recursive function for
this.

Higher-Order Functions

Functions obviously play a central role in functional programming. Two simple
examples are

def even(x: Int) : Boolean = x % 2 == 0
def odd(x: Int) : Boolean = x % 2 == 1

More interestingly, the concept of functions is really pushed to the limit in func-
tional programming. Functions can take other functions as arguments and can
return a function as a result. This is actually quite important for making code
generic. Assume a list of 10 elements:

val 1st = (1 to 10).tolist

Say, we want to filter out all even numbers. For this we can use

17

scala> lst.filter(even)
List(2, 4, 6, 8, 10)

where filter expects a function as argument specifying which elements of the
list should be kept and which should be left out. By allowing filter to take a
function as argument, we can also easily filter out odd numbers as well.

scala> lst.filter(odd)
List(1, 3, 5, 7, 9)

Such function arguments are quite frequently used for “generic” functions. For
example it is easy to count odd elements in a list or find the first even number
in a list:

scala> lst.count(odd)
5

scala> lst.find(even)
Some (2)

Recall that the return type of even and odd are booleans. Such function are
sometimes called predicates, because they determine what should be true for
an element and what false, and then performing some operation according to
this boolean. Such predicates are quite useful. Say you want to sort the 1st-list
in ascending and descending order. For this you can write

lst.sortWith(_ < _)
lst.sortWith(_ > _)

where sortWith expects a predicate as argument. The construction _ < _stands
for a function that takes two arguments and returns true when the first one is
smaller than the second. You can think of this as elegant shorthand notation for

def smaller(x: Int, y: Int) : Boolean = x <y
lst.sortWith(smaller)

Say you want to find in 1st the first odd number greater than 2. For this you
need to write a function that specifies exactly this condition. To do this you can
use a slight variant of the shorthand notation above

scala> lst.find(n => odd(n) & & n > 2)
Some (3)

Heren => ... specifies a function that takes n as argument and uses this argu-
ment in whatever comes after the double arrow. If you want to use this mech-
anism for looking for an element that is both even and odd, then of course you
out of luck.

scala> lst.find(n => odd(n) && even(n))
None

While functions taking functions as arguments seems a rather useful fea-
ture, the utility of returning a function might not be so clear. I admit the fol-

18

lowing example is a bit contrived, but believe me sometims functions produce
other functions in a very meaningful way. Say we want to generate functions
according to strings, as in

def mkfn(s: String) : (Int => Boolean) =
if (s == "even") even else odd

With this we can generate the required function for filter according to a string:

scala> lst.filter(mkfn("even"))
List(2, 4, 6, 8, 10)
scala> lst.filter(mkfn("foo"))
List(1, 3, 5, 7, 9)

As said, this is example is a bit contrived —I was not able to think of anything
simple, but for example in the Compiler module next year I show a compila-
tion functions that needs to generate functions as intermediate result. Anyway,
notice the interesting type we had to annotate to mkfn. The types in Scala are
described next.

Types

In most functional programming languages, types play an essential role. Scala
is such a language. You have already seen built-in types, like Int, Boolean,
String and BigInt, but also user-defined ones, like Rexp (see coursework). Un-
fortunately, types can be a thorny subject, especially in Scala. For example, why
do we need to give the type to toSet[Int], but not to toList? The reason is
the power of Scala, which sometimes means it cannot infer all necessary typing
information. At the beginning, while getting familiar with Scala, I recommend
a “play-it-by-ear-approach” to types. Fully understanding type-systems, espe-
cially complicated ones like in Scala, can take a module on their own.

In Scala, types are needed whenever you define an inductive datatype and
also whenever you define functions (their arguments and their results need a
type). Base types are types that do not take any (type)arguments, for exam-
ple Int and String. Compound types take one or more arguments, which
as seen earlier need to be given in angle-brackets, for example List[Int] or
Set[List[String]] or Map[Int, Int].

Scala provides a basic mechanism to check the type of a (closed) expression —
closed means that all parts are already known to Scala. Then you can use the
command :type and check in the REPL:

scala> :type (1, List(3), Set(4,5), "hello")
(Int, List[Int], Set[Int], String)

If Scala can calculate the type of the given expression, then it will print it. Un-
fortunately, this way of finding out a type is almost unusable: for ‘things’ where

8till, such a study can be a rewarding training: If you are in the business of designing new
programming languages, you will not be able to turn a blind eye to types. They essentially help
programmers to avoid common programming errors and help with maintaining code.

19

the type is pretty obvious, it gives an answer; but for ‘things’ that are actually
of interest (such as what is the type of a pre-defined function), it gives up with
an error message.

There are a few special type-constructors that fall outside this pattern. One
is for tuples, where the type is written with parentheses. For example

(Int, Int, String)

is for a triple (a tuple with three components—two integers and a string). Tu-
ples are helpful if you want to define functions with multiple results, say the
function returning the quotient and remainder of two numbers. For this you
might define:

def quo_rem(m: Int, n: Int) : (Int, Int) =
(m/ n, m%n)

Since this function returns a pair of integers, its return type needs to be of type
(Int, Int). Incidentally, this is also the input type of this function. For this
notice quo_rem takes two arguments, namely m and n, both of which are integers.
They are “packaged” in a pair. Consequently the complete type of quo_rem is

(Int, Int) => (Int, Int)

This uses another special type-constructor, written as the arrow =>. This is
sometimes also called function arrow. For example, the type Int => Stringis
for a function that takes an integer as input argument and produces a string as
result. A function of this type is for instance

def mk_string(n: Int) : String = n match {
case @ => "zero"
case 1 => "one"
case 2 => "two
case => "many"

}

It takes an integer as input argument and returns a string. The type of the
function generated in mkfn above, is Int => Boolean.

Unfortunately, unlike other functional programming languages, there is in
Scala no easy way to find out the types of existing functions, except by looking
into the documentation

https://dotty.epfl.ch/api/index.html

The function arrow can also be iterated, as in Int => String => Boolean.
This is the type for a function taking an integer as first argument and a string
as second, and the result of the function is a boolean. Though silly, a function
of this type would be

def chk_string(n: Int)(s: String) : Boolean =
mk_string(n) == s

20

https://dotty.epfl.ch/api/index.html

which checks whether the integer n corresponds to the name s given by the
function mk_string. Notice the unusual way of specifying the arguments of
this function: the arguments are given one after the other, instead of being in
a pair (what would be the type of this function then?). This way of specifying
the arguments can be useful, for example in situations like this

scala> List("one", "two", "three", "many").map(chk_string(2))
res4 = List(false, true, false, false)

scala> List("one", "two", "three", "many").map(chk_string(3))
res5 = List(false, false, false, true)

In each case we can give to map a specialised version of chk_string—once spe-
cialised to 2 and once to 3. This kind of “specialising” a function is called partial
application—we have not yet given to this function all arguments it needs, but
only some of them.

Coming back to the type Int => String => Boolean. The rule about such
function types is that the right-most type specifies what the function returns (a
boolean in this case). The types before that specify how many arguments the
function expects and what their type is (in this case two arguments, one of type
Int and another of type String). Given this rule, what kind of function has
type (Int => String) => Boolean? Well, it returns a boolean. More interest-
ingly, though, it only takes a single argument (because of the parentheses). The
single argument happens to be another function (taking an integer as input and
returning a string). Remember that mk_string is just such a function. So how
can we use it? For this define the somewhat silly function apply_3:

def apply_3(f: Int => String): Bool = f(3) == "many"

scala> apply_3(mk_string)
resé = true

You might ask: Apart from silly functions like above, what is the point of
having functions as input arguments to other functions? Well, in all functional
programming languages, including Scala, it is really essential to allow functions
as input argument. Above you have already seen map and foreach which need
this feature. Consider the functions print and println, which both print out
strings, but the latter adds a line break. You can call foreach with either of
them and thus changing how, for example, five numbers are printed.

scala> (1 to 5).tolList.foreach(print)
12345

scala> (1 to 5).toList.foreach(println)
1

v h WwnN

21

This is actually one of the main design principles in functional programming.
You have generic functions like map and foreach that can traverse data contain-
ers, like lists or sets. They then take a function to specify what should be done
with each element during the traversal. This requires that the generic traversal
functions can cope with any kind of function (not just functions that, for ex-
ample, take as input an integer and produce a string like above). This means
we cannot fix the type of the generic traversal functions, but have to keep them
polymorphic.”

There is one more type constructor that is rather special. It is called Unit.
Recall that Boolean has two values, namely true and false. This can be used,
for example, to test something and decide whether the test succeeds or not. In
contrast the type Unit has only a single value, written (). This seems like a
completely useless type and return value for a function, but is actually quite
useful. It indicates when the function does not return any result. The purpose
of these functions is to cause something being written on the screen or written
into a file, for example. This is what is called they cause a side-effect, for example
new content displayed on the screen or some new data in a file. Scala uses
the Unit type to indicate that a function does not have a result, but potentially
causes a side-effect. Typical examples are the printing functions, like print.

More Info

There is much more to Scala than I can possibly describe in this short document
and teach in the lectures. Fortunately there are a number of free books about
Scala and of course lots of help online. For example

® https://www.youtube.com/user/ShadowofCatron
® http://docs.scala-lang.org/tutorials
e https://www.scala-exercises.org

® https://twitter.github.io/scala_school

There is also an online course at Coursera on Functional Programming Prin-
ciples in Scala by Martin Odersky, the main developer of the Scala language.
And a document that explains Scala for Java programmers

® http://docs.scala-lang.org/tutorials/scala-for-java-programmers.html

While I am quite enthusiastic about Scala, I am also happy to admit that it
has more than its fair share of faults. For example, whilst implicits are great,
they can also be a source of great headaches, for example consider the code:

scala> List (1, 2, 3) contains "your mom"
resl: Boolean = false

9 Another interesting topic about types, but we omit it here for the sake of brevity.

22

https://www.youtube.com/user/ShadowofCatron
http://docs.scala-lang.org/tutorials
https://www.scala-exercises.org
https://twitter.github.io/scala_school
http://docs.scala-lang.org/tutorials/scala-for-java-programmers.html

Scala Syntax for Java Developers
Scala compiles to the JVM, like the Java language. Because of this, it can re-use
many libraries. Here are a few hints how some Java code tranlsates to Scala

code:

Variable declaration:

Drink coke = getCoke(); Java

val coke : Drink = getCoke() Scala
or even

val coke = getCoke() Scala

Unit means void:

public void output(String s) { Java
System.out.println(s);

}

def output(s: String): Unit = println(s) Scala

Compound types, say the type for list of Strings:

List<String> Java

List[String] Scala

String interpolations

System.out.println("Hello, "+ first + " "+ last + "!");
Java
println(s"Hello, $first $last!") Scala

Java provides some syntactic sugar when constructing anonymous functions:

list.foreach(item -> System.out.println("* " + item));
Java
In Scala, we use the => symbol for the same:
list.foreach(item => println(s"* $item")) Scala

23

Rather than returning false, this code should throw a typing-error. There are
also many limitations Scala inherited from the JVM that can be really annoying.
For example a fixed stack size. One can work around this particular limitation,
but why does one have to? More such ‘puzzles’ can be found at

http://scalapuzzlers.comand http:
//latkin.org/blog/2017/05/02/when-the-scala-compiler-doesnt-help/

Even if Scala has been a success in several high-profile companies, there is
also a company (Yammer) that first used Scala in their production code, but
then moved away from it. Allegedly they did not like the steep learning curve
of Scala and also that new versions of Scala often introduced incompatibilities
in old code. Also the Java language is lately developing at lightening speed (in
comparison to the past) taking on many features of Scala and other languages,
and it seems it even introduces new features on its own. So there is seemingly
even more incentive to stick with the old stuff you know. Still, the goal of this
part of PEP is to bend your mind about what programming is...namely func-
tional programming. I promise you, this will be useful no matter with which
programming language you will work.

Scala is deep: After many years, I still continue to learn new technique for
writing more elegant code. Scala 3 seems to iron out a number of snags from
Scala 2, but why on earth are they introducing Python-esque indentation and
why on earth are they re-introducing the then-keyword in Scala 3, when I just
about got comfortable without it?

Conclusion

I'hope you liked the short journey through the Scala language —but remember
we like you to take on board the functional programming point of view, rather
than just learning another language: Immutable functions are easier to trust,
because they the same output on the same input. For the same reason they are
easier to test and debug. There is an interesting blog article about Scala by a
convert:

https://www.skedulo.com/tech-blog/technology-scala-programming/

He makes pretty much the same arguments about functional programming and
immutability (one section is teasingly called “Where Did all the Bugs Go?”). If
you happen to moan about all the idiotic features of Scala (3), well, I guess this
is part of the package according to this quote:

There are only two kinds of languages: the ones people complain about
and the ones nobody uses.

—Bjarne Stroustrup (the inventor of C++)

24

http://scalapuzzlers.com
http://latkin.org/blog/2017/05/02/when-the-scala-compiler-doesnt-help/
http://latkin.org/blog/2017/05/02/when-the-scala-compiler-doesnt-help/
https://www.skedulo.com/tech-blog/technology-scala-programming/

