| 
362
 | 
     1  | 
object CW6a {
 | 
| 
208
 | 
     2  | 
  | 
| 
362
 | 
     3  | 
//(1) Complete the collatz function below. It should
  | 
| 
 | 
     4  | 
//    recursively calculate the number of steps needed
  | 
| 
 | 
     5  | 
//    until the collatz series reaches the number 1.
  | 
| 
 | 
     6  | 
//    If needed, you can use an auxiliary function that
  | 
| 
 | 
     7  | 
//    performs the recursion. The function should expect
  | 
| 
 | 
     8  | 
//    arguments in the range of 1 to 1 Million.
  | 
| 
208
 | 
     9  | 
  | 
| 
362
 | 
    10  | 
def collatz(n: Long) : Long =
  | 
| 
 | 
    11  | 
    if ( n == 1) 1;
  | 
| 
 | 
    12  | 
    else if (n % 2 == 0) 1 + collatz( n / 2);
  | 
| 
 | 
    13  | 
    else 1 + collatz( n * 3 + 1);
  | 
| 
208
 | 
    14  | 
  | 
| 
 | 
    15  | 
  | 
| 
362
 | 
    16  | 
//(2) Complete the collatz_max function below. It should
  | 
| 
 | 
    17  | 
//    calculate how many steps are needed for each number
  | 
| 
 | 
    18  | 
//    from 1 up to a bound and then calculate the maximum number of
  | 
| 
 | 
    19  | 
//    steps and the corresponding number that needs that many
  | 
| 
 | 
    20  | 
//    steps. Again, you should expect bounds in the range of 1
  | 
| 
 | 
    21  | 
//    up to 1 Million. The first component of the pair is
  | 
| 
 | 
    22  | 
//    the maximum number of steps and the second is the
  | 
| 
 | 
    23  | 
//    corresponding number.
  | 
| 
208
 | 
    24  | 
  | 
| 
362
 | 
    25  | 
def collatz_max(bnd: Long) : (Long, Long) =
  | 
| 
 | 
    26  | 
     ((1.toLong to bnd).toList.map
  | 
| 
 | 
    27  | 
        (n => collatz(n)).max ,
  | 
| 
 | 
    28  | 
            (1.toLong to bnd).toList.map
  | 
| 
 | 
    29  | 
                (n => collatz(n)).indexOf((1.toLong to bnd).toList.map
  | 
| 
 | 
    30  | 
                    (n => collatz(n)).max) + 1);
  | 
| 
208
 | 
    31  | 
  | 
| 
362
 | 
    32  | 
//(3) Implement a function that calculates the last_odd
  | 
| 
 | 
    33  | 
//    number in a collatz series.  For this implement an
  | 
| 
 | 
    34  | 
//    is_pow_of_two function which tests whether a number
  | 
| 
 | 
    35  | 
//    is a power of two. The function is_hard calculates
  | 
| 
 | 
    36  | 
//    whether 3n + 1 is a power of two. Again you can
  | 
| 
 | 
    37  | 
//    assume the input ranges between 1 and 1 Million,
  | 
| 
 | 
    38  | 
//    and also assume that the input of last_odd will not
  | 
| 
 | 
    39  | 
//    be a power of 2.
  | 
| 
 | 
    40  | 
//idk
  | 
| 
 | 
    41  | 
 def is_pow_of_two(n: Long) : Boolean =
  | 
| 
 | 
    42  | 
    if ( n & ( n - 1) == 0) true;
  | 
| 
 | 
    43  | 
    else false;
  | 
| 
208
 | 
    44  | 
  | 
| 
362
 | 
    45  | 
def is_hard(n: Long) : Boolean =
  | 
| 
 | 
    46  | 
    if ( (3*n + 1) & 3*n == 0) true;
  | 
| 
 | 
    47  | 
    else false;
  | 
| 
335
 | 
    48  | 
  | 
| 
 | 
    49  | 
  | 
| 
362
 | 
    50  | 
def last_odd(n: Long) : Long = ???
  | 
| 
335
 | 
    51  | 
  | 
| 
 | 
    52  | 
  | 
| 
 | 
    53  | 
  | 
| 
362
 | 
    54  | 
}
  |