| 
417
 | 
     1  | 
// Main Part 3 about Regular Expression Matching
  | 
| 
300
 | 
     2  | 
//=============================================
  | 
| 
153
 | 
     3  | 
  | 
| 
403
 | 
     4  | 
object M3 {
 | 
| 
249
 | 
     5  | 
  | 
| 
221
 | 
     6  | 
// Regular Expressions
  | 
| 
153
 | 
     7  | 
abstract class Rexp
  | 
| 
 | 
     8  | 
case object ZERO extends Rexp
  | 
| 
 | 
     9  | 
case object ONE extends Rexp
  | 
| 
 | 
    10  | 
case class CHAR(c: Char) extends Rexp
  | 
| 
403
 | 
    11  | 
case class ALTs(rs: List[Rexp]) extends Rexp      // alternatives 
  | 
| 
 | 
    12  | 
case class SEQ(r1: Rexp, r2: Rexp) extends Rexp   // sequence
  | 
| 
 | 
    13  | 
case class STAR(r: Rexp) extends Rexp             // star
  | 
| 
153
 | 
    14  | 
  | 
| 
 | 
    15  | 
  | 
| 
417
 | 
    16  | 
// some convenience for typing regular expressions
  | 
| 
403
 | 
    17  | 
  | 
| 
 | 
    18  | 
//the usual binary choice can be defined in terms of ALTs
  | 
| 
 | 
    19  | 
def ALT(r1: Rexp, r2: Rexp) = ALTs(List(r1, r2))
  | 
| 
 | 
    20  | 
  | 
| 
 | 
    21  | 
  | 
| 
229
 | 
    22  | 
import scala.language.implicitConversions    
  | 
| 
 | 
    23  | 
import scala.language.reflectiveCalls 
  | 
| 
 | 
    24  | 
  | 
| 
153
 | 
    25  | 
def charlist2rexp(s: List[Char]): Rexp = s match {
 | 
| 
 | 
    26  | 
  case Nil => ONE
  | 
| 
 | 
    27  | 
  case c::Nil => CHAR(c)
  | 
| 
 | 
    28  | 
  case c::s => SEQ(CHAR(c), charlist2rexp(s))
  | 
| 
 | 
    29  | 
}
  | 
| 
 | 
    30  | 
implicit def string2rexp(s: String): Rexp = charlist2rexp(s.toList)
  | 
| 
 | 
    31  | 
  | 
| 
 | 
    32  | 
implicit def RexpOps (r: Rexp) = new {
 | 
| 
 | 
    33  | 
  def | (s: Rexp) = ALT(r, s)
  | 
| 
 | 
    34  | 
  def % = STAR(r)
  | 
| 
 | 
    35  | 
  def ~ (s: Rexp) = SEQ(r, s)
  | 
| 
 | 
    36  | 
}
  | 
| 
 | 
    37  | 
  | 
| 
 | 
    38  | 
implicit def stringOps (s: String) = new {
 | 
| 
 | 
    39  | 
  def | (r: Rexp) = ALT(s, r)
  | 
| 
 | 
    40  | 
  def | (r: String) = ALT(s, r)
  | 
| 
 | 
    41  | 
  def % = STAR(s)
  | 
| 
 | 
    42  | 
  def ~ (r: Rexp) = SEQ(s, r)
  | 
| 
 | 
    43  | 
  def ~ (r: String) = SEQ(s, r)
  | 
| 
 | 
    44  | 
}
  | 
| 
 | 
    45  | 
  | 
| 
347
 | 
    46  | 
// (1) Complete the function nullable according to
  | 
| 
229
 | 
    47  | 
// the definition given in the coursework; this 
  | 
| 
153
 | 
    48  | 
// function checks whether a regular expression
  | 
| 
221
 | 
    49  | 
// can match the empty string and Returns a boolean
  | 
| 
 | 
    50  | 
// accordingly.
  | 
| 
153
 | 
    51  | 
  | 
| 
347
 | 
    52  | 
def nullable (r: Rexp) : Boolean = r match {
 | 
| 
 | 
    53  | 
  case ZERO => false
  | 
| 
 | 
    54  | 
  case ONE => true
  | 
| 
417
 | 
    55  | 
  case CHAR(c) => false
  | 
| 
 | 
    56  | 
  case ALTs(rs) => {
 | 
| 
 | 
    57  | 
    if (rs.size == 0) false
  | 
| 
 | 
    58  | 
    else if (nullable(rs.head)) true
  | 
| 
 | 
    59  | 
    else nullable(ALTs(rs.tail))
  | 
| 
 | 
    60  | 
  }
  | 
| 
 | 
    61  | 
  case SEQ(c, s) => nullable(c) && nullable(s)
  | 
| 
 | 
    62  | 
  case STAR(r) => true
  | 
| 
 | 
    63  | 
  case _ => false
  | 
| 
153
 | 
    64  | 
}
  | 
| 
 | 
    65  | 
  | 
| 
417
 | 
    66  | 
  | 
| 
347
 | 
    67  | 
// (2) Complete the function der according to
  | 
| 
153
 | 
    68  | 
// the definition given in the coursework; this
  | 
| 
229
 | 
    69  | 
// function calculates the derivative of a 
  | 
| 
221
 | 
    70  | 
// regular expression w.r.t. a character.
  | 
| 
153
 | 
    71  | 
  | 
| 
347
 | 
    72  | 
def der (c: Char, r: Rexp) : Rexp = r match {
 | 
| 
 | 
    73  | 
  case ZERO => ZERO
  | 
| 
 | 
    74  | 
  case ONE => ZERO
  | 
| 
417
 | 
    75  | 
  case CHAR(x) => {
 | 
| 
 | 
    76  | 
    if (x==c) ONE
  | 
| 
 | 
    77  | 
    else ZERO
  | 
| 
 | 
    78  | 
  }
  | 
| 
 | 
    79  | 
  case ALTs(rs) => ALTs(for (i <- rs) yield der(c, i))
  | 
| 
 | 
    80  | 
  case SEQ(x, y) => {
 | 
| 
 | 
    81  | 
    if (nullable(x)) ALTs(List(SEQ(der(c, x), y), der(c, y)))
  | 
| 
 | 
    82  | 
    else SEQ(der(c, x), y)
  | 
| 
 | 
    83  | 
  }
  | 
| 
 | 
    84  | 
  case STAR(x) => SEQ(der(c, x), STAR(x))
  | 
| 
 | 
    85  | 
}
  | 
| 
 | 
    86  | 
  | 
| 
 | 
    87  | 
  | 
| 
 | 
    88  | 
// (3) Implement the flatten function flts. It
  | 
| 
 | 
    89  | 
// deletes 0s from a list of regular expressions
  | 
| 
 | 
    90  | 
// and also 'spills out', or flattens, nested 
  | 
| 
 | 
    91  | 
// ALTernativeS.
  | 
| 
 | 
    92  | 
  | 
| 
 | 
    93  | 
def flts(rs: List[Rexp]) : List[Rexp] = rs match {
 | 
| 
 | 
    94  | 
  case Nil => Nil
  | 
| 
 | 
    95  | 
  case ZERO::rest => flts(rest)
  | 
| 
 | 
    96  | 
  case ALTs(rs_other)::rest => rs_other ::: flts(rest)
  | 
| 
 | 
    97  | 
  case r::rest => r::flts(rest)
  | 
| 
153
 | 
    98  | 
}
  | 
| 
 | 
    99  | 
  | 
| 
403
 | 
   100  | 
  | 
| 
 | 
   101  | 
  | 
| 
417
 | 
   102  | 
// (4) Complete the simp function according to
  | 
| 
 | 
   103  | 
// the specification given in the coursework description; 
  | 
| 
 | 
   104  | 
// this function simplifies a regular expression from
  | 
| 
229
 | 
   105  | 
// the inside out, like you would simplify arithmetic 
  | 
| 
 | 
   106  | 
// expressions; however it does not simplify inside 
  | 
| 
417
 | 
   107  | 
// STAR-regular expressions. Use the _.distinct and 
  | 
| 
 | 
   108  | 
// flts functions.
  | 
| 
403
 | 
   109  | 
  | 
| 
347
 | 
   110  | 
def simp(r: Rexp) : Rexp = r match {
 | 
| 
417
 | 
   111  | 
  case SEQ(x, ZERO) => ZERO
  | 
| 
 | 
   112  | 
  case SEQ(ZERO, x) => ZERO
  | 
| 
 | 
   113  | 
  case SEQ(x, ONE) => x
  | 
| 
 | 
   114  | 
  case SEQ(ONE, x) => x
  | 
| 
 | 
   115  | 
  case SEQ(x, y) => SEQ(simp(x), simp(y))
  | 
| 
 | 
   116  | 
  case ALTs(rs) => {
 | 
| 
 | 
   117  | 
    val list = flts(for (x <- rs) yield simp(x)).distinct
  | 
| 
 | 
   118  | 
    if (list.size == 0) ZERO
  | 
| 
 | 
   119  | 
    else if (list.size == 1) list.head
  | 
| 
 | 
   120  | 
    else ALTs(list)
  | 
| 
347
 | 
   121  | 
  }
  | 
| 
417
 | 
   122  | 
  case x => x
  | 
| 
153
 | 
   123  | 
}
  | 
| 
 | 
   124  | 
  | 
| 
221
 | 
   125  | 
  | 
| 
417
 | 
   126  | 
// (5) Complete the two functions below; the first 
  | 
| 
153
 | 
   127  | 
// calculates the derivative w.r.t. a string; the second
  | 
| 
 | 
   128  | 
// is the regular expression matcher taking a regular
  | 
| 
 | 
   129  | 
// expression and a string and checks whether the
  | 
| 
417
 | 
   130  | 
// string matches the regular expression
  | 
| 
153
 | 
   131  | 
  | 
| 
347
 | 
   132  | 
def ders (s: List[Char], r: Rexp) : Rexp = s match {
 | 
| 
 | 
   133  | 
  case Nil => r
  | 
| 
417
 | 
   134  | 
  case c::rest => {
 | 
| 
 | 
   135  | 
    val deriv = simp(der(c,r))
  | 
| 
 | 
   136  | 
    ders(rest, deriv)
  | 
| 
 | 
   137  | 
  }
  | 
| 
153
 | 
   138  | 
}
  | 
| 
 | 
   139  | 
  | 
| 
417
 | 
   140  | 
def matcher(r: Rexp, s: String): Boolean = nullable(ders(s.toList, r))
  | 
| 
153
 | 
   141  | 
  | 
| 
417
 | 
   142  | 
  | 
| 
 | 
   143  | 
// (6) Complete the size function for regular
  | 
| 
229
 | 
   144  | 
// expressions according to the specification 
  | 
| 
153
 | 
   145  | 
// given in the coursework.
  | 
| 
 | 
   146  | 
  | 
| 
347
 | 
   147  | 
def size(r: Rexp): Int = r match {
 | 
| 
417
 | 
   148  | 
  case Nil => 0
  | 
| 
347
 | 
   149  | 
  case ZERO => 1
  | 
| 
 | 
   150  | 
  case ONE => 1
  | 
| 
417
 | 
   151  | 
  case CHAR(x) => 1
  | 
| 
 | 
   152  | 
  case ALTs(rs) => 1 + (for (x <- rs) yield size(x)).sum
  | 
| 
 | 
   153  | 
  case SEQ(x, y) => 1 + size(x) + size(y)
  | 
| 
 | 
   154  | 
  case STAR(x) => 1 + size(x)
  | 
| 
153
 | 
   155  | 
}
  | 
| 
 | 
   156  | 
  | 
| 
347
 | 
   157  | 
  | 
| 
236
 | 
   158  | 
// some testing data
  | 
| 
300
 | 
   159  | 
  | 
| 
417
 | 
   160  | 
  | 
| 
 | 
   161  | 
// matcher(("a" ~ "b") ~ "c", "abc")  // => true
 | 
| 
 | 
   162  | 
// matcher(("a" ~ "b") ~ "c", "ab")   // => false
 | 
| 
229
 | 
   163  | 
  | 
| 
 | 
   164  | 
// the supposedly 'evil' regular expression (a*)* b
  | 
| 
417
 | 
   165  | 
// val EVIL = SEQ(STAR(STAR(CHAR('a'))), CHAR('b'))
 | 
| 
229
 | 
   166  | 
  | 
| 
417
 | 
   167  | 
// matcher(EVIL, "a" * 1000 ++ "b")   // => true
  | 
| 
 | 
   168  | 
// matcher(EVIL, "a" * 1000)          // => false
  | 
| 
153
 | 
   169  | 
  | 
| 
 | 
   170  | 
// size without simplifications
  | 
| 
417
 | 
   171  | 
// size(der('a', der('a', EVIL)))             // => 28
 | 
| 
 | 
   172  | 
// size(der('a', der('a', der('a', EVIL))))   // => 58
 | 
| 
153
 | 
   173  | 
  | 
| 
 | 
   174  | 
// size with simplification
  | 
| 
417
 | 
   175  | 
// size(simp(der('a', der('a', EVIL))))           // => 8
 | 
| 
 | 
   176  | 
// size(simp(der('a', der('a', der('a', EVIL))))) // => 8
 | 
| 
228
 | 
   177  | 
  | 
| 
229
 | 
   178  | 
// Python needs around 30 seconds for matching 28 a's with EVIL. 
  | 
| 
221
 | 
   179  | 
// Java 9 and later increase this to an "astonishing" 40000 a's in
  | 
| 
417
 | 
   180  | 
// 30 seconds.
  | 
| 
153
 | 
   181  | 
//
  | 
| 
417
 | 
   182  | 
// Lets see how long it really takes to match strings with 
  | 
| 
 | 
   183  | 
// 5 Million a's...it should be in the range of a couple
  | 
| 
 | 
   184  | 
// of seconds.
  | 
| 
153
 | 
   185  | 
  | 
| 
417
 | 
   186  | 
// def time_needed[T](i: Int, code: => T) = {
 | 
| 
 | 
   187  | 
//   val start = System.nanoTime()
  | 
| 
 | 
   188  | 
//   for (j <- 1 to i) code
  | 
| 
 | 
   189  | 
//   val end = System.nanoTime()
  | 
| 
 | 
   190  | 
//   "%.5f".format((end - start)/(i * 1.0e9))
  | 
| 
 | 
   191  | 
// }
  | 
| 
153
 | 
   192  | 
  | 
| 
417
 | 
   193  | 
// for (i <- 0 to 5000000 by 500000) {
 | 
| 
 | 
   194  | 
//   println(s"$i ${time_needed(2, matcher(EVIL, "a" * i))} secs.") 
 | 
| 
 | 
   195  | 
// }
  | 
| 
221
 | 
   196  | 
  | 
| 
229
 | 
   197  | 
// another "power" test case 
  | 
| 
417
 | 
   198  | 
// simp(Iterator.iterate(ONE:Rexp)(r => SEQ(r, ONE | ONE)).drop(50).next()) == ONE
  | 
| 
221
 | 
   199  | 
  | 
| 
 | 
   200  | 
// the Iterator produces the rexp
  | 
| 
 | 
   201  | 
//
  | 
| 
 | 
   202  | 
//      SEQ(SEQ(SEQ(..., ONE | ONE) , ONE | ONE), ONE | ONE)
  | 
| 
 | 
   203  | 
//
  | 
| 
403
 | 
   204  | 
//    where SEQ is nested 50 times.
  | 
| 
300
 | 
   205  | 
  | 
| 
417
 | 
   206  | 
// This a dummy comment. Hopefully it works!
  | 
| 
228
 | 
   207  | 
  | 
| 
300
 | 
   208  | 
}
  | 
| 
417
 | 
   209  | 
  |