| 50 |      1 | // Part 1 about finding and counting Knight's tours
 | 
|  |      2 | //==================================================
 | 
| 4 |      3 | 
 | 
| 50 |      4 | type Pos = (Int, Int)    // a position on a chessboard 
 | 
|  |      5 | type Path = List[Pos]    // a path...a list of positions
 | 
|  |      6 | 
 | 
|  |      7 | //(1a) Complete the function that tests whether the position 
 | 
|  |      8 | // is inside the board and not yet element in the path.
 | 
|  |      9 | 
 | 
|  |     10 | def is_legal(dim: Int, path: Path)(x: Pos): Boolean = ...
 | 
| 4 |     11 | 
 | 
|  |     12 | 
 | 
| 50 |     13 | //(1b) Complete the function that calculates for a position 
 | 
|  |     14 | // all legal onward moves that are not already in the path. 
 | 
|  |     15 | // The moves should be ordered in a "clockwise" order.
 | 
|  |     16 |  
 | 
|  |     17 | def legal_moves(dim: Int, path: Path, x: Pos): List[Pos] = ...
 | 
| 4 |     18 | 
 | 
| 50 |     19 | //assert(legal_moves(8, Nil, (2,2)) == 
 | 
|  |     20 | //  List((3,4), (4,3), (4,1), (3,0), (1,0), (0,1), (0,3), (1,4)))
 | 
|  |     21 | //assert(legal_moves(8, Nil, (7,7)) == List((6,5), (5,6)))
 | 
|  |     22 | //assert(legal_moves(8, List((4,1), (1,0)), (2,2)) == 
 | 
|  |     23 | //  List((3,4), (4,3), (3,0), (0,1), (0,3), (1,4)))
 | 
|  |     24 | //assert(legal_moves(8, List((6,6)), (7,7)) == List((6,5), (5,6)))
 | 
| 4 |     25 | 
 | 
|  |     26 | 
 | 
| 53 |     27 | //(1c) Complete the two recursive functions below. 
 | 
| 50 |     28 | // They exhaustively search for open tours starting from the 
 | 
|  |     29 | // given path. The first function counts all possible open tours, 
 | 
|  |     30 | // and the second collects all open tours in a list of paths.
 | 
| 4 |     31 | 
 | 
| 50 |     32 | def count_tours(dim: Int, path: Path): Int = ...
 | 
|  |     33 | 
 | 
|  |     34 | def enum_tours(dim: Int, path: Path): List[Path] = ...
 | 
|  |     35 | 
 | 
|  |     36 | 
 |