templates1/collatz.scala
author Christian Urban <christian.urban@kcl.ac.uk>
Tue, 25 Aug 2020 01:42:55 +0100
changeset 339 df847aa5f883
parent 281 32dfd2ca577b
child 343 51e25cc30483
permissions -rw-r--r--
updated
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
266
31e5218f43de updated to 2.13
Christian Urban <urbanc@in.tum.de>
parents: 199
diff changeset
     1
// Basic Part about the 3n+1 conjecture
31e5218f43de updated to 2.13
Christian Urban <urbanc@in.tum.de>
parents: 199
diff changeset
     2
//======================================
11
417869f65585 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     3
281
32dfd2ca577b updated
Christian Urban <urbanc@in.tum.de>
parents: 266
diff changeset
     4
object CW6a {
11
417869f65585 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     5
15
52713e632ac0 updated
Christian Urban <urbanc@in.tum.de>
parents: 11
diff changeset
     6
//(1) Complete the collatz function below. It should
52713e632ac0 updated
Christian Urban <urbanc@in.tum.de>
parents: 11
diff changeset
     7
//    recursively calculate the number of steps needed 
52713e632ac0 updated
Christian Urban <urbanc@in.tum.de>
parents: 11
diff changeset
     8
//    until the collatz series reaches the number 1.
127
01d522ba48d4 updated
Christian Urban <urbanc@in.tum.de>
parents: 39
diff changeset
     9
//    If needed, you can use an auxiliary function that
15
52713e632ac0 updated
Christian Urban <urbanc@in.tum.de>
parents: 11
diff changeset
    10
//    performs the recursion. The function should expect
24
66b97f9a40f8 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 18
diff changeset
    11
//    arguments in the range of 1 to 1 Million.
11
417869f65585 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    12
129
1b0f1573c27c updated
Christian Urban <urbanc@in.tum.de>
parents: 127
diff changeset
    13
//def collatz(n: Long) : Long = ...
11
417869f65585 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    14
417869f65585 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    15
266
31e5218f43de updated to 2.13
Christian Urban <urbanc@in.tum.de>
parents: 199
diff changeset
    16
//(2) Complete the collatz_max function below. It should
31e5218f43de updated to 2.13
Christian Urban <urbanc@in.tum.de>
parents: 199
diff changeset
    17
//    calculate how many steps are needed for each number 
31e5218f43de updated to 2.13
Christian Urban <urbanc@in.tum.de>
parents: 199
diff changeset
    18
//    from 1 up to a bound and then calculate the maximum number of
31e5218f43de updated to 2.13
Christian Urban <urbanc@in.tum.de>
parents: 199
diff changeset
    19
//    steps and the corresponding number that needs that many 
31e5218f43de updated to 2.13
Christian Urban <urbanc@in.tum.de>
parents: 199
diff changeset
    20
//    steps. Again, you should expect bounds in the range of 1
31e5218f43de updated to 2.13
Christian Urban <urbanc@in.tum.de>
parents: 199
diff changeset
    21
//    up to 1 Million. The first component of the pair is
31e5218f43de updated to 2.13
Christian Urban <urbanc@in.tum.de>
parents: 199
diff changeset
    22
//    the maximum number of steps and the second is the 
31e5218f43de updated to 2.13
Christian Urban <urbanc@in.tum.de>
parents: 199
diff changeset
    23
//    corresponding number.
15
52713e632ac0 updated
Christian Urban <urbanc@in.tum.de>
parents: 11
diff changeset
    24
129
1b0f1573c27c updated
Christian Urban <urbanc@in.tum.de>
parents: 127
diff changeset
    25
//def collatz_max(bnd: Long) : (Long, Long) = ...
11
417869f65585 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    26
281
32dfd2ca577b updated
Christian Urban <urbanc@in.tum.de>
parents: 266
diff changeset
    27
}
11
417869f65585 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    28