296
|
1 |
// Preliminary Part about finding Knight's tours
|
|
2 |
//===============================================
|
|
3 |
|
|
4 |
|
|
5 |
object CW8a {
|
214
|
6 |
|
|
7 |
// If you need any auxiliary function, feel free to
|
|
8 |
// implement it, but do not make any changes to the
|
|
9 |
// templates below. Also have a look whether the functions
|
|
10 |
// at the end are of any help.
|
|
11 |
|
|
12 |
|
|
13 |
|
|
14 |
type Pos = (Int, Int) // a position on a chessboard
|
|
15 |
type Path = List[Pos] // a path...a list of positions
|
|
16 |
|
|
17 |
//(1) Complete the function that tests whether the position x
|
|
18 |
// is inside the board and not yet element in the path.
|
|
19 |
|
|
20 |
//def is_legal(dim: Int, path: Path, x: Pos) : Boolean = ...
|
|
21 |
|
|
22 |
|
|
23 |
|
|
24 |
//(2) Complete the function that calculates for a position x
|
|
25 |
// all legal onward moves that are not already in the path.
|
|
26 |
// The moves should be ordered in a "clockwise" manner.
|
|
27 |
|
|
28 |
|
|
29 |
//def legal_moves(dim: Int, path: Path, x: Pos) : List[Pos] = ...
|
|
30 |
|
|
31 |
|
296
|
32 |
//some testcases
|
214
|
33 |
//
|
|
34 |
//assert(legal_moves(8, Nil, (2,2)) ==
|
|
35 |
// List((3,4), (4,3), (4,1), (3,0), (1,0), (0,1), (0,3), (1,4)))
|
|
36 |
//assert(legal_moves(8, Nil, (7,7)) == List((6,5), (5,6)))
|
|
37 |
//assert(legal_moves(8, List((4,1), (1,0)), (2,2)) ==
|
|
38 |
// List((3,4), (4,3), (3,0), (0,1), (0,3), (1,4)))
|
|
39 |
//assert(legal_moves(8, List((6,6)), (7,7)) == List((6,5), (5,6)))
|
|
40 |
|
|
41 |
|
|
42 |
//(3) Complete the two recursive functions below.
|
|
43 |
// They exhaustively search for knight's tours starting from the
|
|
44 |
// given path. The first function counts all possible tours,
|
|
45 |
// and the second collects all tours in a list of paths.
|
|
46 |
|
|
47 |
//def count_tours(dim: Int, path: Path) : Int = ...
|
|
48 |
|
|
49 |
//def enum_tours(dim: Int, path: Path) : List[Path] = ...
|
|
50 |
|
|
51 |
|
296
|
52 |
//(4) Implement a first-function that finds the first
|
214
|
53 |
// element, say x, in the list xs where f is not None.
|
|
54 |
// In that case Return f(x), otherwise None. If possible,
|
|
55 |
// calculate f(x) only once.
|
|
56 |
|
|
57 |
//def first(xs: List[Pos], f: Pos => Option[Path]) : Option[Path] = ...
|
|
58 |
|
|
59 |
|
296
|
60 |
// testcases
|
|
61 |
//
|
214
|
62 |
//def foo(x: (Int, Int)) = if (x._1 > 3) Some(List(x)) else None
|
|
63 |
//
|
|
64 |
//first(List((1, 0),(2, 0),(3, 0),(4, 0)), foo) // Some(List((4,0)))
|
|
65 |
//first(List((1, 0),(2, 0),(3, 0)), foo) // None
|
|
66 |
|
|
67 |
|
296
|
68 |
//(5) Implement a function that uses the first-function from (5) for
|
214
|
69 |
// trying out onward moves, and searches recursively for a
|
|
70 |
// knight tour on a dim * dim-board.
|
|
71 |
|
|
72 |
|
|
73 |
//def first_tour(dim: Int, path: Path) : Option[Path] = ...
|
|
74 |
|
|
75 |
|
|
76 |
|
|
77 |
|
|
78 |
|
|
79 |
|
|
80 |
/* Helper functions
|
|
81 |
|
|
82 |
|
|
83 |
// for measuring time
|
|
84 |
def time_needed[T](code: => T) : T = {
|
|
85 |
val start = System.nanoTime()
|
|
86 |
val result = code
|
|
87 |
val end = System.nanoTime()
|
|
88 |
println(f"Time needed: ${(end - start) / 1.0e9}%3.3f secs.")
|
|
89 |
result
|
|
90 |
}
|
|
91 |
|
|
92 |
// can be called for example with
|
|
93 |
// time_needed(count_tours(dim, List((0, 0))))
|
|
94 |
// in order to print out the time that is needed for
|
|
95 |
// running count_tours
|
|
96 |
|
296
|
97 |
|
|
98 |
|
|
99 |
|
214
|
100 |
// for printing a board
|
|
101 |
def print_board(dim: Int, path: Path): Unit = {
|
|
102 |
println
|
|
103 |
for (i <- 0 until dim) {
|
|
104 |
for (j <- 0 until dim) {
|
|
105 |
print(f"${path.reverse.indexOf((j, dim - i - 1))}%3.0f ")
|
|
106 |
}
|
|
107 |
println
|
|
108 |
}
|
|
109 |
}
|
|
110 |
|
|
111 |
|
|
112 |
*/
|
296
|
113 |
|
|
114 |
}
|