213
|
1 |
// Part 3 about finding a single tour using the Warnsdorf Rule
|
|
2 |
//=============================================================
|
|
3 |
|
|
4 |
object CW8b { // for preparing the jar
|
|
5 |
|
|
6 |
type Pos = (Int, Int)
|
|
7 |
type Path = List[Pos]
|
|
8 |
|
|
9 |
|
|
10 |
// for measuring time in the JAR
|
|
11 |
def time_needed[T](code: => T) : T = {
|
|
12 |
val start = System.nanoTime()
|
|
13 |
val result = code
|
|
14 |
val end = System.nanoTime()
|
|
15 |
println(f"Time needed: ${(end - start) / 1.0e9}%3.3f secs.")
|
|
16 |
result
|
|
17 |
}
|
|
18 |
|
|
19 |
|
|
20 |
def print_board(dim: Int, path: Path): Unit = {
|
|
21 |
println
|
|
22 |
for (i <- 0 until dim) {
|
|
23 |
for (j <- 0 until dim) {
|
|
24 |
print(f"${path.reverse.indexOf((i, j))}%4.0f ")
|
|
25 |
}
|
|
26 |
println
|
|
27 |
}
|
|
28 |
}
|
|
29 |
|
|
30 |
def add_pair(x: Pos, y: Pos): Pos =
|
|
31 |
(x._1 + y._1, x._2 + y._2)
|
|
32 |
|
|
33 |
def is_legal(dim: Int, path: Path, x: Pos): Boolean =
|
|
34 |
0 <= x._1 && 0 <= x._2 && x._1 < dim && x._2 < dim && !path.contains(x)
|
|
35 |
|
|
36 |
def moves(x: Pos): List[Pos] =
|
|
37 |
List(( 1, 2),( 2, 1),( 2, -1),( 1, -2),
|
|
38 |
(-1, -2),(-2, -1),(-2, 1),(-1, 2)).map(add_pair(x, _))
|
|
39 |
|
|
40 |
def legal_moves(dim: Int, path: Path, x: Pos): List[Pos] =
|
|
41 |
moves(x).filter(is_legal(dim, path, _))
|
|
42 |
|
|
43 |
def ordered_moves(dim: Int, path: Path, x: Pos): List[Pos] =
|
|
44 |
legal_moves(dim, path, x).sortBy((x) => legal_moves(dim, path, x).length)
|
|
45 |
|
|
46 |
import scala.annotation.tailrec
|
|
47 |
|
|
48 |
@tailrec
|
|
49 |
def first(xs: List[Pos], f: Pos => Option[Path]): Option[Path] = xs match {
|
|
50 |
case Nil => None
|
|
51 |
case x::xs => {
|
|
52 |
val result = f(x)
|
|
53 |
if (result.isDefined) result else first(xs, f)
|
|
54 |
}
|
|
55 |
}
|
|
56 |
|
|
57 |
|
|
58 |
def tfirst_closed_tour_heuristics(dim: Int, path: Path): Option[Path] = {
|
|
59 |
if (path.length == dim * dim && moves(path.head).contains(path.last)) Some(path)
|
|
60 |
else
|
|
61 |
first(ordered_moves(dim, path, path.head), (x: Pos) => tfirst_closed_tour_heuristics(dim, x::path))
|
|
62 |
}
|
|
63 |
|
|
64 |
def first_closed_tour_heuristics(dim: Int, path: Path) =
|
|
65 |
time_needed(tfirst_closed_tour_heuristics(dim: Int, path: Path))
|
|
66 |
|
221
|
67 |
def first_closed_tour_heuristic(dim: Int, path: Path) =
|
|
68 |
time_needed(tfirst_closed_tour_heuristics(dim: Int, path: Path))
|
213
|
69 |
|
|
70 |
// heuristic cannot be used to search for closed tours on 7 x 7 an beyond
|
|
71 |
//for (dim <- 1 to 6) {
|
|
72 |
// val t = time_needed(0, first_closed_tour_heuristics(dim, List((dim / 2, dim / 2))))
|
|
73 |
// println(s"${dim} x ${dim} closed: " + (if (t == None) "" else { print_board(dim, t.get) ; "" }))
|
|
74 |
//}
|
|
75 |
|
|
76 |
|
|
77 |
def tfirst_tour_heuristics(dim: Int, path: Path): Option[Path] = {
|
|
78 |
if (path.length == dim * dim) Some(path)
|
|
79 |
else
|
|
80 |
first(ordered_moves(dim, path, path.head), (x: Pos) => tfirst_tour_heuristics(dim, x::path))
|
|
81 |
}
|
|
82 |
|
|
83 |
|
|
84 |
def first_tour_heuristics(dim: Int, path: Path) =
|
|
85 |
time_needed(tfirst_tour_heuristics(dim: Int, path: Path))
|
|
86 |
|
221
|
87 |
def first_tour_heuristic(dim: Int, path: Path) =
|
|
88 |
time_needed(tfirst_tour_heuristics(dim: Int, path: Path))
|
213
|
89 |
|
|
90 |
// will be called with boards up to 30 x 30
|
|
91 |
|
|
92 |
|
|
93 |
}
|