| 
213
 | 
     1  | 
// Part 1 about finding and counting Knight's tours
  | 
| 
 | 
     2  | 
//==================================================
  | 
| 
 | 
     3  | 
  | 
| 
 | 
     4  | 
object CW8a {   // for preparing the jar
 | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
type Pos = (Int, Int)    // a position on a chessboard 
  | 
| 
 | 
     7  | 
type Path = List[Pos]    // a path...a list of positions
  | 
| 
 | 
     8  | 
  | 
| 
 | 
     9  | 
  | 
| 
 | 
    10  | 
// for measuring time in the JAR
  | 
| 
 | 
    11  | 
def time_needed[T](code: => T) : T = {
 | 
| 
 | 
    12  | 
  val start = System.nanoTime()
  | 
| 
 | 
    13  | 
  val result = code
  | 
| 
 | 
    14  | 
  val end = System.nanoTime()
  | 
| 
 | 
    15  | 
  println(f"Time needed: ${(end - start) / 1.0e9}%3.3f secs.")
 | 
| 
 | 
    16  | 
  result
  | 
| 
 | 
    17  | 
}
  | 
| 
 | 
    18  | 
  | 
| 
 | 
    19  | 
// for printing a board
  | 
| 
 | 
    20  | 
def print_board(dim: Int, path: Path): Unit = {
 | 
| 
 | 
    21  | 
  println
  | 
| 
 | 
    22  | 
  for (i <- 0 until dim) {
 | 
| 
 | 
    23  | 
    for (j <- 0 until dim) {
 | 
| 
 | 
    24  | 
      print(f"${path.reverse.indexOf((j, dim - i - 1))}%3.0f ")
 | 
| 
 | 
    25  | 
    }
  | 
| 
 | 
    26  | 
    println
  | 
| 
 | 
    27  | 
  } 
  | 
| 
 | 
    28  | 
}
  | 
| 
 | 
    29  | 
  | 
| 
 | 
    30  | 
def is_legal(dim: Int, path: Path, x: Pos): Boolean = 
  | 
| 
 | 
    31  | 
  0 <= x._1 && 0 <= x._2 && x._1 < dim && x._2 < dim && !path.contains(x)
  | 
| 
 | 
    32  | 
  | 
| 
 | 
    33  | 
// testcases
  | 
| 
 | 
    34  | 
//assert(is_legal(8, Nil, (3, 4)) == true)
  | 
| 
 | 
    35  | 
//assert(is_legal(8, List((4, 1), (1, 0)), (4, 1)) == false)
  | 
| 
 | 
    36  | 
//assert(is_legal(2, Nil, (0, 0)) == true)
  | 
| 
 | 
    37  | 
  | 
| 
 | 
    38  | 
  | 
| 
 | 
    39  | 
def add_pair(x: Pos, y: Pos): Pos = 
  | 
| 
 | 
    40  | 
  (x._1 + y._1, x._2 + y._2)
  | 
| 
 | 
    41  | 
  | 
| 
 | 
    42  | 
def moves(x: Pos): List[Pos] = 
  | 
| 
 | 
    43  | 
  List(( 1,  2),( 2,  1),( 2, -1),( 1, -2),
  | 
| 
 | 
    44  | 
       (-1, -2),(-2, -1),(-2,  1),(-1,  2)).map(add_pair(x, _))
  | 
| 
 | 
    45  | 
  | 
| 
 | 
    46  | 
// 1 mark
  | 
| 
 | 
    47  | 
  | 
| 
 | 
    48  | 
def legal_moves(dim: Int, path: Path, x: Pos): List[Pos] = 
  | 
| 
 | 
    49  | 
  moves(x).filter(is_legal(dim, path, _))
  | 
| 
 | 
    50  | 
  | 
| 
 | 
    51  | 
// testcases
  | 
| 
 | 
    52  | 
//assert(legal_moves(8, Nil, (2,2)) == 
  | 
| 
 | 
    53  | 
//  List((3,4), (4,3), (4,1), (3,0), (1,0), (0,1), (0,3), (1,4)))
  | 
| 
 | 
    54  | 
//assert(legal_moves(8, Nil, (7,7)) == List((6,5), (5,6)))
  | 
| 
 | 
    55  | 
//assert(legal_moves(8, List((4,1), (1,0)), (2,2)) == 
  | 
| 
 | 
    56  | 
//  List((3,4), (4,3), (3,0), (0,1), (0,3), (1,4)))
  | 
| 
 | 
    57  | 
//assert(legal_moves(8, List((6,6)), (7,7)) == List((6,5), (5,6)))
  | 
| 
 | 
    58  | 
//assert(legal_moves(1, Nil, (0,0)) == List())
  | 
| 
 | 
    59  | 
//assert(legal_moves(2, Nil, (0,0)) == List())
  | 
| 
 | 
    60  | 
//assert(legal_moves(3, Nil, (0,0)) == List((1,2), (2,1)))
  | 
| 
 | 
    61  | 
  | 
| 
 | 
    62  | 
// 2 marks
  | 
| 
 | 
    63  | 
  | 
| 
 | 
    64  | 
def tcount_tours(dim: Int, path: Path): Int = {
 | 
| 
 | 
    65  | 
  if (path.length == dim * dim) 1
  | 
| 
 | 
    66  | 
  else 
  | 
| 
 | 
    67  | 
    (for (x <- legal_moves(dim, path, path.head)) yield tcount_tours(dim, x::path)).sum
  | 
| 
 | 
    68  | 
}
  | 
| 
 | 
    69  | 
  | 
| 
 | 
    70  | 
def count_tours(dim: Int, path: Path) =
  | 
| 
 | 
    71  | 
  time_needed(tcount_tours(dim: Int, path: Path))
  | 
| 
 | 
    72  | 
  | 
| 
 | 
    73  | 
  | 
| 
 | 
    74  | 
def tenum_tours(dim: Int, path: Path): List[Path] = {
 | 
| 
 | 
    75  | 
  if (path.length == dim * dim) List(path)
  | 
| 
 | 
    76  | 
  else 
  | 
| 
 | 
    77  | 
    (for (x <- legal_moves(dim, path, path.head)) yield tenum_tours(dim, x::path)).flatten
  | 
| 
 | 
    78  | 
}
  | 
| 
 | 
    79  | 
  | 
| 
 | 
    80  | 
def enum_tours(dim: Int, path: Path) =
  | 
| 
 | 
    81  | 
  time_needed(tenum_tours(dim: Int, path: Path))
  | 
| 
 | 
    82  | 
  | 
| 
 | 
    83  | 
// test cases
  | 
| 
 | 
    84  | 
  | 
| 
 | 
    85  | 
/*
  | 
| 
 | 
    86  | 
def count_all_tours(dim: Int) = {
 | 
| 
 | 
    87  | 
  for (i <- (0 until dim).toList; 
  | 
| 
 | 
    88  | 
       j <- (0 until dim).toList) yield count_tours(dim, List((i, j)))
  | 
| 
 | 
    89  | 
}
  | 
| 
 | 
    90  | 
  | 
| 
 | 
    91  | 
def enum_all_tours(dim: Int): List[Path] = {
 | 
| 
 | 
    92  | 
  (for (i <- (0 until dim).toList; 
  | 
| 
 | 
    93  | 
        j <- (0 until dim).toList) yield enum_tours(dim, List((i, j)))).flatten
  | 
| 
 | 
    94  | 
}
  | 
| 
 | 
    95  | 
  | 
| 
 | 
    96  | 
  | 
| 
 | 
    97  | 
println("Number of tours starting from (0, 0)")
 | 
| 
 | 
    98  | 
  | 
| 
 | 
    99  | 
for (dim <- 1 to 5) {
 | 
| 
 | 
   100  | 
  println(s"${dim} x ${dim} " + time_needed(0, count_tours(dim, List((0, 0)))))
 | 
| 
 | 
   101  | 
}
  | 
| 
 | 
   102  | 
  | 
| 
 | 
   103  | 
println("Number of tours starting from all fields")
 | 
| 
 | 
   104  | 
  | 
| 
 | 
   105  | 
for (dim <- 1 to 5) {
 | 
| 
 | 
   106  | 
  println(s"${dim} x ${dim} " + time_needed(0, count_all_tours(dim)))
 | 
| 
 | 
   107  | 
}
  | 
| 
 | 
   108  | 
  | 
| 
 | 
   109  | 
for (dim <- 1 to 5) {
 | 
| 
 | 
   110  | 
  val ts = enum_tours(dim, List((0, 0)))
  | 
| 
 | 
   111  | 
  println(s"${dim} x ${dim} ")   
 | 
| 
 | 
   112  | 
  if (ts != Nil) {
 | 
| 
 | 
   113  | 
    print_board(dim, ts.head)
  | 
| 
 | 
   114  | 
    println(ts.head)
  | 
| 
 | 
   115  | 
  }
  | 
| 
 | 
   116  | 
}
  | 
| 
 | 
   117  | 
*/
  | 
| 
 | 
   118  | 
  | 
| 
 | 
   119  | 
// 1 mark
  | 
| 
 | 
   120  | 
  | 
| 
 | 
   121  | 
def first(xs: List[Pos], f: Pos => Option[Path]): Option[Path] = xs match {
 | 
| 
 | 
   122  | 
  case Nil => None
  | 
| 
 | 
   123  | 
  case x::xs => {
 | 
| 
 | 
   124  | 
    val result = f(x)
  | 
| 
 | 
   125  | 
    if (result.isDefined) result else first(xs, f)
  | 
| 
 | 
   126  | 
  }
  | 
| 
 | 
   127  | 
}
  | 
| 
 | 
   128  | 
  | 
| 
 | 
   129  | 
// test cases
  | 
| 
 | 
   130  | 
//def foo(x: (Int, Int)) = if (x._1 > 3) Some(List(x)) else None
  | 
| 
 | 
   131  | 
//
  | 
| 
 | 
   132  | 
//first(List((1, 0),(2, 0),(3, 0),(4, 0)), foo)
  | 
| 
 | 
   133  | 
//first(List((1, 0),(2, 0),(3, 0)), foo)
  | 
| 
 | 
   134  | 
  | 
| 
 | 
   135  | 
  | 
| 
 | 
   136  | 
// 1 mark
  | 
| 
 | 
   137  | 
  | 
| 
 | 
   138  | 
def tfirst_tour(dim: Int, path: Path): Option[Path] = {
 | 
| 
 | 
   139  | 
  if (path.length == dim * dim) Some(path)
  | 
| 
 | 
   140  | 
  else
  | 
| 
 | 
   141  | 
    first(legal_moves(dim, path, path.head), (x:Pos) => tfirst_tour(dim, x::path))
  | 
| 
 | 
   142  | 
}
  | 
| 
 | 
   143  | 
  | 
| 
 | 
   144  | 
def first_tour(dim: Int, path: Path) = 
  | 
| 
 | 
   145  | 
  time_needed(tfirst_tour(dim: Int, path: Path))
  | 
| 
 | 
   146  | 
  | 
| 
 | 
   147  | 
  | 
| 
 | 
   148  | 
/*
  | 
| 
 | 
   149  | 
for (dim <- 1 to 8) {
 | 
| 
 | 
   150  | 
  val t = first_tour(dim, List((0, 0)))
  | 
| 
 | 
   151  | 
  println(s"${dim} x ${dim} " + (if (t == None) "" else { print_board(dim, t.get) ; "" }))
 | 
| 
 | 
   152  | 
}
  | 
| 
 | 
   153  | 
*/
  | 
| 
 | 
   154  | 
  | 
| 
 | 
   155  | 
// 15 secs for 8 x 8
  | 
| 
 | 
   156  | 
//val ts1 = time_needed(0,first_tour(8, List((0, 0))).get)
  | 
| 
218
 | 
   157  | 
val ts1 = time_needed(0,first_tour(8, List((1, 1))).get)
  | 
| 
213
 | 
   158  | 
  | 
| 
 | 
   159  | 
// no result for 4 x 4
  | 
| 
 | 
   160  | 
//val ts2 = time_needed(0, first_tour(4, List((0, 0))))
  | 
| 
 | 
   161  | 
  | 
| 
 | 
   162  | 
// 0.3 secs for 6 x 6
  | 
| 
 | 
   163  | 
//val ts3 = time_needed(0, first_tour(6, List((0, 0))))
  | 
| 
 | 
   164  | 
  | 
| 
 | 
   165  | 
// 15 secs for 8 x 8
  | 
| 
 | 
   166  | 
//time_needed(0, print_board(8, first_tour(8, List((0, 0))).get))
  | 
| 
 | 
   167  | 
  | 
| 
 | 
   168  | 
  | 
| 
 | 
   169  | 
  | 
| 
 | 
   170  | 
  | 
| 
 | 
   171  | 
  | 
| 
 | 
   172  | 
}
  | 
| 
 | 
   173  | 
  | 
| 
 | 
   174  | 
  |