50
|
1 |
// Part 3 about finding a single tour using the Warnsdorf Rule
|
|
2 |
//=============================================================
|
|
3 |
|
213
|
4 |
|
|
5 |
type Pos = (Int, Int)
|
|
6 |
type Path = List[Pos]
|
|
7 |
|
|
8 |
// for measuring time
|
|
9 |
def time_needed[T](n: Int, code: => T) : T = {
|
|
10 |
val start = System.nanoTime()
|
|
11 |
for (i <- 0 until n) code
|
|
12 |
val result = code
|
|
13 |
val end = System.nanoTime()
|
|
14 |
println(f"Time needed: ${(end - start) / 1.0e9}%3.3f secs.")
|
|
15 |
result
|
|
16 |
}
|
|
17 |
|
|
18 |
def print_board(dim: Int, path: Path): Unit = {
|
|
19 |
println
|
|
20 |
for (i <- 0 until dim) {
|
|
21 |
for (j <- 0 until dim) {
|
|
22 |
print(f"${path.reverse.indexOf((i, j))}%4.0f ")
|
|
23 |
}
|
|
24 |
println
|
|
25 |
}
|
|
26 |
}
|
|
27 |
|
|
28 |
def add_pair(x: Pos, y: Pos): Pos =
|
|
29 |
(x._1 + y._1, x._2 + y._2)
|
4
|
30 |
|
213
|
31 |
def is_legal(dim: Int, path: Path, x: Pos): Boolean =
|
|
32 |
0 <= x._1 && 0 <= x._2 && x._1 < dim && x._2 < dim && !path.contains(x)
|
|
33 |
|
|
34 |
def moves(x: Pos): List[Pos] =
|
|
35 |
List(( 1, 2),( 2, 1),( 2, -1),( 1, -2),
|
|
36 |
(-1, -2),(-2, -1),(-2, 1),(-1, 2)).map(add_pair(x, _))
|
|
37 |
|
|
38 |
def legal_moves(dim: Int, path: Path, x: Pos): List[Pos] =
|
|
39 |
moves(x).filter(is_legal(dim, path, _))
|
|
40 |
|
|
41 |
def ordered_moves(dim: Int, path: Path, x: Pos): List[Pos] =
|
|
42 |
legal_moves(dim, path, x).sortBy((x) => legal_moves(dim, path, x).length)
|
50
|
43 |
|
213
|
44 |
import scala.annotation.tailrec
|
|
45 |
|
|
46 |
@tailrec
|
|
47 |
def first(xs: List[Pos], f: Pos => Option[Path]): Option[Path] = xs match {
|
|
48 |
case Nil => None
|
|
49 |
case x::xs => {
|
|
50 |
val result = f(x)
|
|
51 |
if (result.isDefined) result else first(xs, f)
|
|
52 |
}
|
|
53 |
}
|
|
54 |
|
|
55 |
|
|
56 |
//def first[A, B](xs: List[A], f: A => Option[B]): Option[B] =
|
|
57 |
// xs.flatMap(f(_)).headOption
|
|
58 |
|
50
|
59 |
|
213
|
60 |
def first_closed_tour_heuristics(dim: Int, path: Path): Option[Path] = {
|
|
61 |
if (path.length == dim * dim && moves(path.head).contains(path.last)) Some(path)
|
|
62 |
else
|
|
63 |
first(ordered_moves(dim, path, path.head), (x: Pos) => first_closed_tour_heuristics(dim, x::path))
|
|
64 |
}
|
|
65 |
|
|
66 |
// heuristic cannot be used to search for closed tours on 7 x 7
|
|
67 |
for (dim <- 1 to 6) {
|
|
68 |
val t = time_needed(0, first_closed_tour_heuristics(dim, List((dim / 2, dim / 2))))
|
|
69 |
println(s"${dim} x ${dim} closed: " + (if (t == None) "" else { print_board(dim, t.get) ; "" }))
|
|
70 |
}
|
|
71 |
|
4
|
72 |
|
213
|
73 |
//@tailrec
|
|
74 |
/*
|
|
75 |
def first_tour_heuristics(dim: Int, path: Path): Option[Path] = {
|
|
76 |
|
|
77 |
@tailrec
|
|
78 |
def aux(dim: Int, path: Path, moves: List[Pos]): Option[Path] =
|
|
79 |
if (path.length == dim * dim) Some(path)
|
|
80 |
else
|
|
81 |
moves match {
|
|
82 |
case Nil => None
|
|
83 |
case x::xs => {
|
|
84 |
val r = first_tour_heuristics(dim, x::path)
|
|
85 |
if (r.isDefined) r else aux(dim, path, xs)
|
|
86 |
}
|
|
87 |
}
|
|
88 |
|
|
89 |
aux(dim, path, ordered_moves(dim, path, path.head))
|
|
90 |
}
|
|
91 |
*/
|
50
|
92 |
|
213
|
93 |
@tailrec
|
|
94 |
def tour_on_mega_board(dim: Int, paths: List[Path]): Option[Path] = paths match {
|
|
95 |
case Nil => None
|
|
96 |
case (path::rest) =>
|
|
97 |
if (path.length == dim * dim) Some(path)
|
|
98 |
else tour_on_mega_board(dim, ordered_moves(dim, path, path.head).map(_::path) ::: rest)
|
|
99 |
}
|
|
100 |
|
|
101 |
|
4
|
102 |
|
213
|
103 |
/*
|
|
104 |
def first_tour_heuristics(dim: Int, path: Path): Option[Path] = {
|
|
105 |
if (path.length == dim * dim) Some(path)
|
|
106 |
else
|
|
107 |
for (p <- ordered_moves(dim, path, path.head))
|
|
108 |
val r = first_tour_heuristics(dim, x::path)
|
|
109 |
//first(ordered_moves(dim, path, path.head), (x: Pos) => first_tour_heuristics(dim, x::path))
|
|
110 |
ordered_moves(dim, path, path.head).view.flatMap((x: Pos) => first_tour_heuristics(dim, x::path)).headOption
|
|
111 |
}
|
|
112 |
*/
|
50
|
113 |
|
213
|
114 |
/*
|
|
115 |
for (dim <- 1 to 50) {
|
|
116 |
val t = first_tour_heuristics(dim, List((dim / 2, dim / 2)))
|
|
117 |
println(s"${dim} x ${dim}: " + (if (t == None) "" else { print_board(dim, t.get) ; "" }))
|
|
118 |
}
|
|
119 |
*/
|
|
120 |
|
|
121 |
val dim = 70
|
|
122 |
println(s"${dim} x ${dim}:")
|
|
123 |
print_board(dim, time_needed(0, tour_on_mega_board(dim, List(List((0, 0)))).get))
|
|
124 |
|