| 203 |      1 | // Part 2 and 3 about Movie Recommendations 
 | 
|  |      2 | // at Danube.co.uk
 | 
|  |      3 | //===========================================
 | 
|  |      4 | 
 | 
|  |      5 | import io.Source
 | 
|  |      6 | import scala.util._
 | 
|  |      7 | 
 | 
|  |      8 | // (1) Implement the function get_csv_url which takes an url-string
 | 
|  |      9 | //     as argument and requests the corresponding file. The two urls
 | 
|  |     10 | //     of interest are ratings_url and movies_url, which correspond 
 | 
|  |     11 | //     to CSV-files.
 | 
|  |     12 | //
 | 
|  |     13 | //     The function should ReTurn the CSV-file appropriately broken
 | 
|  |     14 | //     up into lines, and the first line should be dropped (that is without
 | 
|  |     15 | //     the header of the CSV-file). The result is a list of strings (lines
 | 
|  |     16 | //     in the file).
 | 
|  |     17 | 
 | 
|  |     18 | //def get_csv_url(url: String) : List[String] = ...
 | 
|  |     19 | 
 | 
|  |     20 | 
 | 
|  |     21 | val ratings_url = """https://nms.kcl.ac.uk/christian.urban/ratings.csv"""
 | 
|  |     22 | val movies_url = """https://nms.kcl.ac.uk/christian.urban/movies.csv"""
 | 
|  |     23 | 
 | 
|  |     24 | // testcases
 | 
|  |     25 | //-----------
 | 
|  |     26 | //val ratings = get_csv_url(ratings_url)
 | 
|  |     27 | //val movies = get_csv_url(movies_url)
 | 
|  |     28 | 
 | 
|  |     29 | //ratings.length  // 87313
 | 
|  |     30 | //movies.length   // 9742
 | 
|  |     31 | 
 | 
|  |     32 | 
 | 
|  |     33 | 
 | 
|  |     34 | // (2) Implement two functions that process the CSV-files from (1). The ratings
 | 
|  |     35 | //     function filters out all ratings below 4 and ReTurns a list of 
 | 
|  |     36 | //     (userID, movieID) pairs. The movies function just ReTurns a list 
 | 
|  |     37 | //     of (movieID, title) pairs.
 | 
|  |     38 | 
 | 
|  |     39 | 
 | 
|  |     40 | //def process_ratings(lines: List[String]) : List[(String, String)] = ...
 | 
|  |     41 | 
 | 
|  |     42 | //def process_movies(lines: List[String]) : List[(String, String)] = ...
 | 
|  |     43 | 
 | 
|  |     44 | 
 | 
|  |     45 | // testcases
 | 
|  |     46 | //-----------
 | 
|  |     47 | //val good_ratings = process_ratings(ratings)
 | 
|  |     48 | //val movie_names = process_movies(movies)
 | 
|  |     49 | 
 | 
|  |     50 | //good_ratings.length   //48580
 | 
|  |     51 | //movie_names.length    // 9742
 | 
|  |     52 | 
 | 
|  |     53 | 
 | 
|  |     54 | 
 | 
|  |     55 | //==============================================
 | 
|  |     56 | // Do not change anything below, unless you want 
 | 
|  |     57 | // to submit the file for the advanced part 3!
 | 
|  |     58 | //==============================================
 | 
|  |     59 | 
 | 
|  |     60 | 
 | 
|  |     61 | 
 | 
|  |     62 | // (3) Implement a grouping function that calculates a Map
 | 
|  |     63 | //     containing the userIDs and all the corresponding recommendations 
 | 
|  |     64 | //     (list of movieIDs). This  should be implemented in a tail
 | 
|  |     65 | //     recursive fashion, using a Map m as accumulator. This Map m
 | 
|  |     66 | //     is set to Map() at the beginning of the calculation.
 | 
|  |     67 | 
 | 
|  |     68 | //def groupById(ratings: List[(String, String)], 
 | 
|  |     69 | //              m: Map[String, List[String]]) : Map[String, List[String]] = ...
 | 
|  |     70 | 
 | 
|  |     71 | 
 | 
|  |     72 | // testcases
 | 
|  |     73 | //-----------
 | 
|  |     74 | //val ratings_map = groupById(good_ratings, Map())
 | 
|  |     75 | //val movies_map = movie_names.toMap
 | 
|  |     76 | 
 | 
|  |     77 | //ratings_map.get("414").get.map(movies_map.get(_)) 
 | 
|  |     78 | //    => most prolific recommender with 1227 positive ratings
 | 
|  |     79 | 
 | 
|  |     80 | //ratings_map.get("474").get.map(movies_map.get(_)) 
 | 
|  |     81 | //    => second-most prolific recommender with 787 positive ratings
 | 
|  |     82 | 
 | 
|  |     83 | //ratings_map.get("214").get.map(movies_map.get(_)) 
 | 
|  |     84 | //    => least prolific recommender with only 1 positive rating
 | 
|  |     85 | 
 | 
|  |     86 | 
 | 
|  |     87 | 
 | 
|  |     88 | // (4) Implement a function that takes a ratings map and a movie_name as argument.
 | 
|  |     89 | //     The function calculates all suggestions containing
 | 
|  |     90 | //     the movie in its recommendations. It ReTurns a list of all these
 | 
|  |     91 | //     recommendations (each of them is a list and needs to have the movie deleted, 
 | 
|  |     92 | //     otherwise it might happen we recommend the same movie).
 | 
|  |     93 | 
 | 
|  |     94 | 
 | 
|  |     95 | //def favourites(m: Map[String, List[String]], mov: String) : List[List[String]] = ...
 | 
|  |     96 | 
 | 
|  |     97 | 
 | 
|  |     98 | // testcases
 | 
|  |     99 | //-----------
 | 
|  |    100 | // movie ID "912" -> Casablanca (1942)
 | 
|  |    101 | //          "858" -> Godfather
 | 
|  |    102 | //          "260" -> Star Wars: Episode IV - A New Hope (1977)
 | 
|  |    103 | 
 | 
|  |    104 | //favourites(ratings_map, "912").length  // => 80
 | 
|  |    105 | 
 | 
|  |    106 | // That means there are 80 users that recommend the movie with ID 912.
 | 
|  |    107 | // Of these 80  users, 55 gave a good rating to movie 858 and
 | 
|  |    108 | // 52 a good rating to movies 260, 318, 593.
 | 
|  |    109 | 
 | 
|  |    110 | 
 | 
|  |    111 | 
 | 
|  |    112 | // (5) Implement a suggestions function which takes a rating
 | 
|  |    113 | //     map and a movie_name as arguments. It calculates all the recommended
 | 
|  |    114 | //     movies sorted according to the most frequently suggested movie(s) first.
 | 
|  |    115 | 
 | 
|  |    116 | //def suggestions(recs: Map[String, List[String]], 
 | 
|  |    117 | //                mov_name: String) : List[String] = ...
 | 
|  |    118 | 
 | 
|  |    119 | 
 | 
|  |    120 | // testcases
 | 
|  |    121 | //-----------
 | 
|  |    122 | 
 | 
|  |    123 | //suggestions(ratings_map, "912")
 | 
|  |    124 | //suggestions(ratings_map, "912").length  
 | 
|  |    125 | // => 4110 suggestions with List(858, 260, 318, 593, ...)
 | 
|  |    126 | //    being the most frequently suggested movies
 | 
|  |    127 | 
 | 
|  |    128 | 
 | 
|  |    129 | 
 | 
|  |    130 | // (6) Implement a recommendations function which generates at most
 | 
|  |    131 | //     *two* of the most frequently suggested movies. It ReTurns the 
 | 
|  |    132 | //     actual movie names, not the movieIDs.
 | 
|  |    133 | 
 | 
|  |    134 | 
 | 
|  |    135 | //def recommendations(recs: Map[String, List[String]],
 | 
|  |    136 | //                    movs: Map[String, String],
 | 
|  |    137 | //                    mov_name: String) : List[String] = ...
 | 
|  |    138 | 
 | 
|  |    139 | 
 | 
|  |    140 | 
 | 
|  |    141 | // testcases
 | 
|  |    142 | //-----------
 | 
|  |    143 | // recommendations(ratings_map, movies_map, "912")
 | 
|  |    144 | //   => List(Godfather, Star Wars: Episode IV - A NewHope (1977))
 | 
|  |    145 | 
 | 
|  |    146 | //recommendations(ratings_map, movies_map, "260")
 | 
|  |    147 | //   => List(Star Wars: Episode V - The Empire Strikes Back (1980), 
 | 
|  |    148 | //           Star Wars: Episode VI - Return of the Jedi (1983))
 | 
|  |    149 | 
 | 
|  |    150 | // recommendations(ratings_map, movies_map, "2")
 | 
|  |    151 | //   => List(Lion King, Jurassic Park (1993))
 | 
|  |    152 | 
 | 
|  |    153 | // recommendations(ratings_map, movies_map, "0")
 | 
|  |    154 | //   => Nil
 | 
|  |    155 | 
 | 
|  |    156 | // recommendations(ratings_map, movies_map, "1")
 | 
|  |    157 | //   => List(Shawshank Redemption, Forrest Gump (1994))
 | 
|  |    158 | 
 | 
|  |    159 | // recommendations(ratings_map, movies_map, "4")
 | 
|  |    160 | //   => Nil  (there are three ratings for this movie in ratings.csv but they are not positive)     
 | 
|  |    161 | 
 | 
|  |    162 | 
 | 
|  |    163 | // If you want to calculate the recommendations for all movies,
 | 
|  |    164 | // then use this code (it will take a few seconds calculation time).
 | 
|  |    165 | 
 | 
|  |    166 | //val all = for (name <- movie_names.map(_._1)) yield {
 | 
|  |    167 | //  recommendations(ratings_map, movies_map, name)
 | 
|  |    168 | //}
 | 
|  |    169 | 
 | 
|  |    170 | // helper functions
 | 
|  |    171 | //List().take(2
 | 
|  |    172 | //List(1).take(2)
 | 
|  |    173 | //List(1,2).take(2)
 | 
|  |    174 | //List(1,2,3).take(2)
 | 
|  |    175 | 
 | 
|  |    176 | 
 |