45
|
1 |
// Part 1 about finding and counting Knight's tours
|
|
2 |
//==================================================
|
|
3 |
|
|
4 |
type Pos = (Int, Int) // a position on a chessboard
|
|
5 |
type Path = List[Pos] // a path...a list of positions
|
|
6 |
|
|
7 |
def print_board(dim: Int, path: Path): Unit = {
|
|
8 |
println
|
|
9 |
for (i <- 0 until dim) {
|
|
10 |
for (j <- 0 until dim) {
|
|
11 |
print(f"${path.reverse.indexOf((j, dim - i - 1))}%3.0f ")
|
|
12 |
}
|
|
13 |
println
|
|
14 |
}
|
|
15 |
}
|
|
16 |
|
|
17 |
def add_pair(x: Pos)(y: Pos): Pos =
|
|
18 |
(x._1 + y._1, x._2 + y._2)
|
|
19 |
|
|
20 |
def is_legal(dim: Int, path: Path)(x: Pos): Boolean =
|
|
21 |
0 <= x._1 && 0 <= x._2 && x._1 < dim && x._2 < dim && !path.contains(x)
|
|
22 |
|
86
|
23 |
assert(is_legal(8, Nil)((3,4)) == true)
|
|
24 |
assert(is_legal(8, List((4,1), (1,0)))((4,1)) == false)
|
|
25 |
assert(is_legal(2, Nil)((0,0)) == true)
|
|
26 |
|
45
|
27 |
def moves(x: Pos): List[Pos] =
|
|
28 |
List(( 1, 2),( 2, 1),( 2, -1),( 1, -2),
|
|
29 |
(-1, -2),(-2, -1),(-2, 1),(-1, 2)).map(add_pair(x))
|
|
30 |
|
|
31 |
def legal_moves(dim: Int, path: Path, x: Pos): List[Pos] =
|
|
32 |
moves(x).filter(is_legal(dim, path))
|
|
33 |
|
50
|
34 |
assert(legal_moves(8, Nil, (2,2)) ==
|
|
35 |
List((3,4), (4,3), (4,1), (3,0), (1,0), (0,1), (0,3), (1,4)))
|
|
36 |
assert(legal_moves(8, Nil, (7,7)) == List((6,5), (5,6)))
|
|
37 |
assert(legal_moves(8, List((4,1), (1,0)), (2,2)) ==
|
|
38 |
List((3,4), (4,3), (3,0), (0,1), (0,3), (1,4)))
|
|
39 |
assert(legal_moves(8, List((6,6)), (7,7)) == List((6,5), (5,6)))
|
85
|
40 |
assert(legal_moves(1, Nil, (0,0)) == List())
|
|
41 |
assert(legal_moves(2, Nil, (0,0)) == List())
|
|
42 |
assert(legal_moves(3, Nil, (0,0)) == List((1,2), (2,1)))
|
|
43 |
|
45
|
44 |
|
|
45 |
def count_tours(dim: Int, path: Path): Int = {
|
|
46 |
if (path.length == dim * dim) 1
|
|
47 |
else
|
|
48 |
(for (x <- legal_moves(dim, path, path.head)) yield count_tours(dim, x::path)).sum
|
|
49 |
}
|
|
50 |
|
|
51 |
def enum_tours(dim: Int, path: Path): List[Path] = {
|
|
52 |
if (path.length == dim * dim) List(path)
|
|
53 |
else
|
|
54 |
(for (x <- legal_moves(dim, path, path.head)) yield enum_tours(dim, x::path)).flatten
|
|
55 |
}
|
|
56 |
|
86
|
57 |
def count_all_tours(dim: Int) = {
|
|
58 |
for (i <- (0 until dim).toList;
|
|
59 |
j <- (0 until dim).toList) yield count_tours(dim, List((i, j)))
|
45
|
60 |
}
|
|
61 |
|
|
62 |
def enum_all_tours(dim: Int): List[Path] = {
|
|
63 |
(for (i <- (0 until dim).toList;
|
|
64 |
j <- (0 until dim).toList) yield enum_tours(dim, List((i, j)))).flatten
|
|
65 |
}
|
|
66 |
|
86
|
67 |
|
|
68 |
def add_pair_urban(x: Pos)(y: Pos): Pos =
|
|
69 |
(x._1 + y._1, x._2 + y._2)
|
|
70 |
|
|
71 |
def is_legal_urban(dim: Int, path: Path)(x: Pos): Boolean =
|
|
72 |
0 <= x._1 && 0 <= x._2 && x._1 < dim && x._2 < dim && !path.contains(x)
|
|
73 |
|
|
74 |
def moves_urban(x: Pos): List[Pos] =
|
|
75 |
List(( 1, 2),( 2, 1),( 2, -1),( 1, -2),
|
|
76 |
(-1, -2),(-2, -1),(-2, 1),(-1, 2)).map(add_pair_urban(x))
|
|
77 |
|
|
78 |
def legal_moves_urban(dim: Int, path: Path, x: Pos): List[Pos] =
|
|
79 |
moves_urban(x).filter(is_legal_urban(dim, path))
|
|
80 |
|
|
81 |
def correct_urban(dim: Int)(p: Path): Boolean = p match {
|
|
82 |
case Nil => true
|
|
83 |
case x::Nil => true
|
|
84 |
case x::y::p => if (legal_moves_urban(dim, p, y).contains(x)) correct_urban(dim)(y::p) else false
|
|
85 |
}
|
|
86 |
|
|
87 |
enum_tours(5, List((0, 2))).map(correct_urban(5)).forall(_ == true)
|
|
88 |
|
|
89 |
|
45
|
90 |
for (dim <- 1 to 5) {
|
|
91 |
println(s"${dim} x ${dim} " + count_tours(dim, List((0, 0))))
|
|
92 |
}
|
|
93 |
|
|
94 |
for (dim <- 1 to 5) {
|
|
95 |
println(s"${dim} x ${dim} " + count_all_tours(dim))
|
|
96 |
}
|
|
97 |
|
|
98 |
for (dim <- 1 to 5) {
|
|
99 |
val ts = enum_tours(dim, List((0, 0)))
|
|
100 |
println(s"${dim} x ${dim} ")
|
|
101 |
if (ts != Nil) {
|
|
102 |
print_board(dim, ts.head)
|
|
103 |
println(ts.head)
|
|
104 |
}
|
|
105 |
}
|
|
106 |
|
|
107 |
|