45
|
1 |
// Part 1 about finding anod counting Knight's tours
|
|
2 |
//===================================================
|
|
3 |
|
|
4 |
|
|
5 |
|
|
6 |
type Pos = (Int, Int)
|
|
7 |
type Path = List[Pos]
|
|
8 |
|
|
9 |
def print_board(dim: Int, path: Path): Unit = {
|
|
10 |
println
|
|
11 |
for (i <- 0 until dim) {
|
|
12 |
for (j <- 0 until dim) {
|
|
13 |
print(f"${path.reverse.indexOf((i, j))}%3.0f ")
|
|
14 |
}
|
|
15 |
println
|
|
16 |
}
|
|
17 |
}
|
|
18 |
|
|
19 |
def add_pair(x: Pos)(y: Pos): Pos =
|
|
20 |
(x._1 + y._1, x._2 + y._2)
|
|
21 |
|
|
22 |
def dist(dim: Int, y: Pos) =
|
|
23 |
(dim / 2 - y._1).abs + (dim / 2 - y._2).abs
|
|
24 |
|
|
25 |
def is_legal(dim: Int, path: Path)(x: Pos): Boolean =
|
|
26 |
0 <= x._1 && 0 <= x._2 && x._1 < dim && x._2 < dim && !path.contains(x)
|
|
27 |
|
|
28 |
def moves(x: Pos): List[Pos] =
|
|
29 |
List(( 1, 2),( 2, 1),( 2, -1),( 1, -2),
|
|
30 |
(-1, -2),(-2, -1),(-2, 1),(-1, 2)).map(add_pair(x))
|
|
31 |
|
|
32 |
def legal_moves(dim: Int, path: Path, x: Pos): List[Pos] =
|
|
33 |
moves(x).filter(is_legal(dim, path))
|
|
34 |
|
|
35 |
|
|
36 |
def ordered_moves(dim: Int, path: Path, x: Pos): List[Pos] =
|
|
37 |
legal_moves(dim, path, x).sortBy((x) => (legal_moves(dim, path, x).length, dist(dim, x)))
|
|
38 |
|
|
39 |
|
|
40 |
//moves(8)(1,3)
|
|
41 |
//ordered_moves(8)(Nil)(1,3)
|
|
42 |
//ordered_moves(8)(List((2, 4), (2, 6)))(1,3)
|
|
43 |
|
|
44 |
|
|
45 |
|
|
46 |
def count_tours(dim: Int, path: Path): Int = {
|
|
47 |
if (path.length == dim * dim) 1
|
|
48 |
else
|
|
49 |
(for (x <- legal_moves(dim, path, path.head)) yield count_tours(dim, x::path)).sum
|
|
50 |
}
|
|
51 |
|
|
52 |
def enum_tours(dim: Int, path: Path): List[Path] = {
|
|
53 |
if (path.length == dim * dim) List(path)
|
|
54 |
else
|
|
55 |
(for (x <- legal_moves(dim, path, path.head)) yield enum_tours(dim, x::path)).flatten
|
|
56 |
}
|
|
57 |
|
|
58 |
def count_all_tours(dim: Int): Int = {
|
|
59 |
(for (i <- (0 until dim).toList;
|
|
60 |
j <- (0 until dim).toList) yield count_tours(dim, List((i, j)))).sum
|
|
61 |
}
|
|
62 |
|
|
63 |
def enum_all_tours(dim: Int): List[Path] = {
|
|
64 |
(for (i <- (0 until dim).toList;
|
|
65 |
j <- (0 until dim).toList) yield enum_tours(dim, List((i, j)))).flatten
|
|
66 |
}
|
|
67 |
|
|
68 |
/*
|
|
69 |
for (dim <- 1 to 5) {
|
|
70 |
println(s"${dim} x ${dim} " + count_all_tours(dim))
|
|
71 |
}
|
|
72 |
|
|
73 |
for (dim <- 1 to 5) {
|
|
74 |
val ts = enum_all_tours(dim)
|
|
75 |
println(s"${dim} x ${dim} " + (if (ts == Nil) "" else { print_board(dim, ts.head) ; "" }))
|
|
76 |
}
|
|
77 |
*/
|
|
78 |
|
|
79 |
|
|
80 |
def first(xs: List[Pos], f: Pos => Option[Path]): Option[Path] = xs match {
|
|
81 |
case Nil => None
|
|
82 |
case x::xs => {
|
|
83 |
val result = f(x)
|
|
84 |
if (result.isDefined) result else first(xs, f)
|
|
85 |
}
|
|
86 |
}
|
|
87 |
|
|
88 |
|
|
89 |
|
|
90 |
def first_tour(dim: Int, path: Path): Option[Path] = {
|
|
91 |
if (path.length == dim * dim) Some(path)
|
|
92 |
else
|
|
93 |
first(legal_moves(dim, path, path.head), (x: Pos) => first_tour(dim, x::path))
|
|
94 |
}
|
|
95 |
|
|
96 |
for (dim <- 1 to 8) {
|
|
97 |
val t = first_tour(dim, List((0, 0)))
|
|
98 |
println(s"${dim} x ${dim} " + (if (t == None) "" else { print_board(dim, t.get) ; "" }))
|
|
99 |
}
|
|
100 |
|
|
101 |
|
|
102 |
/*
|
|
103 |
def first2[A, B](xs: List[A], f: A => Option[B]): Option[B] =
|
|
104 |
xs.par.flatMap(f(_)).headOption
|
|
105 |
*/
|
|
106 |
|
|
107 |
def first_closed_tour_heuristics(dim: Int, path: Path): Option[Path] = {
|
|
108 |
if (path.length == dim * dim && moves(path.head).contains(path.last)) Some(path)
|
|
109 |
else
|
|
110 |
first(ordered_moves(dim, path, path.head), (x: Pos) => first_closed_tour_heuristics(dim, x::path))
|
|
111 |
}
|
|
112 |
|
|
113 |
|
|
114 |
for (dim <- 1 to 6) {
|
|
115 |
val t = first_closed_tour_heuristics(dim, List((dim / 2, dim / 2)))
|
|
116 |
println(s"${dim} x ${dim} closed: " + (if (t == None) "" else { print_board(dim, t.get) ; "" }))
|
|
117 |
}
|
|
118 |
|
|
119 |
|
|
120 |
def first_tour_heuristics(dim: Int, path: Path): Option[Path] = {
|
|
121 |
if (path.length == dim * dim) Some(path)
|
|
122 |
else
|
|
123 |
first(ordered_moves(dim, path, path.head), (x: Pos) => first_tour_heuristics(dim, x::path))
|
|
124 |
}
|
|
125 |
|
|
126 |
/*
|
|
127 |
for (dim <- 1 to 50) {
|
|
128 |
val t = first_tour_heuristics(dim, List((dim / 2, dim / 2)))
|
|
129 |
println(s"${dim} x ${dim}: " + (if (t == None) "" else { print_board(dim, t.get) ; "" }))
|
|
130 |
}
|
|
131 |
*/
|
|
132 |
|