68
|
1 |
// Part 1 about Regular Expression Matching
|
|
2 |
//==========================================
|
4
|
3 |
|
|
4 |
abstract class Rexp
|
|
5 |
case object ZERO extends Rexp
|
|
6 |
case object ONE extends Rexp
|
|
7 |
case class CHAR(c: Char) extends Rexp
|
68
|
8 |
case class ALT(r1: Rexp, r2: Rexp) extends Rexp // alternative
|
|
9 |
case class SEQ(r1: Rexp, r2: Rexp) extends Rexp // sequence
|
|
10 |
case class STAR(r: Rexp) extends Rexp // star
|
|
11 |
|
|
12 |
|
|
13 |
// some convenience for typing in regular expressions
|
|
14 |
|
|
15 |
import scala.language.implicitConversions
|
|
16 |
import scala.language.reflectiveCalls
|
4
|
17 |
|
68
|
18 |
def charlist2rexp(s: List[Char]): Rexp = s match {
|
|
19 |
case Nil => ONE
|
|
20 |
case c::Nil => CHAR(c)
|
|
21 |
case c::s => SEQ(CHAR(c), charlist2rexp(s))
|
|
22 |
}
|
|
23 |
implicit def string2rexp(s: String): Rexp = charlist2rexp(s.toList)
|
|
24 |
|
|
25 |
implicit def RexpOps (r: Rexp) = new {
|
|
26 |
def | (s: Rexp) = ALT(r, s)
|
|
27 |
def % = STAR(r)
|
|
28 |
def ~ (s: Rexp) = SEQ(r, s)
|
4
|
29 |
}
|
|
30 |
|
68
|
31 |
implicit def stringOps (s: String) = new {
|
|
32 |
def | (r: Rexp) = ALT(s, r)
|
|
33 |
def | (r: String) = ALT(s, r)
|
|
34 |
def % = STAR(s)
|
|
35 |
def ~ (r: Rexp) = SEQ(s, r)
|
|
36 |
def ~ (r: String) = SEQ(s, r)
|
4
|
37 |
}
|
|
38 |
|
68
|
39 |
// (1a) Complete the function nullable according to
|
|
40 |
// the definition given in the coursework; this
|
|
41 |
// function checks whether a regular expression
|
|
42 |
// can match the empty string
|
|
43 |
|
|
44 |
def nullable (r: Rexp) : Boolean = ...
|
4
|
45 |
|
|
46 |
|
68
|
47 |
// (1b) Complete the function der according to
|
|
48 |
// the definition given in the coursework; this
|
|
49 |
// function calculates the derivative of a
|
|
50 |
// regular expression w.r.t. a character
|
|
51 |
|
|
52 |
def der (c: Char, r: Rexp) : Rexp = ...
|
|
53 |
|
|
54 |
// (1c) Complete the function der according to
|
|
55 |
// the specification given in the coursework; this
|
|
56 |
// function simplifies a regular expression;
|
|
57 |
// however it does not simplify inside STAR-regular
|
|
58 |
// expressions
|
|
59 |
|
|
60 |
def simp(r: Rexp) : Rexp = ...
|
|
61 |
|
|
62 |
// (1d) Complete the two functions below; the first
|
|
63 |
// calculates the derivative w.r.t. a string; the second
|
|
64 |
// is the regular expression matcher taking a regular
|
|
65 |
// expression and a string and checks whether the
|
|
66 |
// string matches the regular expression
|
|
67 |
|
|
68 |
def ders (s: List[Char], r: Rexp) : Rexp = ...
|
|
69 |
|
|
70 |
def matcher(r: Rexp, s: String): Boolean = ...
|
4
|
71 |
|
|
72 |
|
68
|
73 |
// (1e) Complete the function below: it searches (from the left to
|
|
74 |
// right) in string s1 all the non-empty substrings that match the
|
|
75 |
// regular expression -- these substrings are assumed to be
|
|
76 |
// the longest substrings matched by the regular expression and
|
|
77 |
// assumed to be non-overlapping. All these substrings in s1 are replaced
|
|
78 |
// by s2.
|
|
79 |
|
|
80 |
def replace(r: Rexp, s1: String, s2: String): String = ...
|
4
|
81 |
|
68
|
82 |
|
4
|
83 |
|
68
|
84 |
// some testing data
|
|
85 |
// the supposedly 'evil' regular expression (a*)* b
|
|
86 |
/*
|
|
87 |
val EVIL = SEQ(STAR(STAR(CHAR('a'))), CHAR('b'))
|
|
88 |
println(matcher(EVIL, "a" * 1000 ++ "b"))
|
|
89 |
println(matcher(EVIL, "a" * 1000))
|
4
|
90 |
|
|
91 |
|
|
92 |
def time_needed[T](i: Int, code: => T) = {
|
|
93 |
val start = System.nanoTime()
|
|
94 |
for (j <- 1 to i) code
|
|
95 |
val end = System.nanoTime()
|
|
96 |
(end - start)/(i * 1.0e9)
|
|
97 |
}
|
|
98 |
|
68
|
99 |
for (i <- 1 to 5000001 by 500000) {
|
|
100 |
println(i + " " + "%.5f".format(time_needed(2, matcher(EVIL, "a" * i))))
|
4
|
101 |
}
|
68
|
102 |
*/
|
4
|
103 |
|
|
104 |
|