| 161 |      1 | // Advanced Part 3 about a really dumb investment strategy
 | 
| 130 |      2 | //==========================================================
 | 
|  |      3 | 
 | 
|  |      4 | object CW6c {
 | 
|  |      5 | 
 | 
|  |      6 | 
 | 
|  |      7 | //two test portfolios
 | 
|  |      8 | 
 | 
| 160 |      9 | val blchip_portfolio = List("GOOG", "AAPL", "MSFT", "IBM", "FB", "AMZN", "BIDU")
 | 
| 161 |     10 | val rstate_portfolio = List("PLD", "PSA", "AMT", "AIV", "AVB", "BXP", "CCI","DLR", "EQIX", "EQR", "ESS", "EXR", "FRT", "GGP", "HCP") 
 | 
| 130 |     11 | 
 | 
| 161 |     12 | // (1.a) The function below takes a stock symbol and a year as arguments.
 | 
|  |     13 | //       It should read the corresponding CSV-file and read the January 
 | 
|  |     14 | //       data from the given year. The data should be collected in a list of
 | 
|  |     15 | //       strings for each line in the CSV-file.
 | 
| 130 |     16 | 
 | 
|  |     17 | import io.Source
 | 
|  |     18 | import scala.util._
 | 
|  |     19 | 
 | 
| 161 |     20 | def get_january_data(symbol: String, year: Int) : List[String] = {
 | 
|  |     21 | 	val file = symbol + ".csv"
 | 
|  |     22 | 	val list = scala.io.Source.fromFile(file).mkString.split("\n").toList
 | 
|  |     23 | 	val rx = (year.toString + ".*")
 | 
|  |     24 | 	(for(n <- 1 to list.length -1 if(list(n) matches rx)) yield list(n)).toList
 | 
|  |     25 | }
 | 
|  |     26 | 
 | 
|  |     27 | 
 | 
|  |     28 | // (1.b) From the output of the get_january_data function, the next function 
 | 
|  |     29 | //       should extract the first line (if it exists) and the corresponding
 | 
|  |     30 | //       first trading price in that year as Option[Double]. If no line is 
 | 
|  |     31 | //       generated by get_january_data then the result is None
 | 
| 130 |     32 | 
 | 
|  |     33 | 
 | 
|  |     34 | def get_first_price(symbol: String, year: Int) : Option[Double] = {
 | 
| 161 |     35 | 	val first_line = get_january_data(symbol, year)
 | 
|  |     36 | 
 | 
|  |     37 | 	if(first_line.length == 0 ){
 | 
|  |     38 | 		None
 | 
|  |     39 | 	} else {
 | 
|  |     40 | 	Option((first_line(0).split(",")(1)).toDouble)
 | 
|  |     41 | 	}
 | 
| 130 |     42 | }
 | 
|  |     43 | 
 | 
|  |     44 | 
 | 
| 161 |     45 | // (1.c) Complete the function below that obtains all first prices
 | 
|  |     46 | //       for the stock symbols from a portfolio (list of strings) and 
 | 
|  |     47 | //       for the given range of years. The inner lists are for the
 | 
|  |     48 | //       stock symbols and the outer list for the years.
 | 
| 130 |     49 | 
 | 
|  |     50 | 
 | 
| 161 |     51 | def get_prices(portfolio: List[String], years: Range) : List[List[Option[Double]]] ={
 | 
|  |     52 | 	(for(y <- years) yield (for(n <- 0 to portfolio.length-1) yield get_first_price(portfolio(n), y)).toList).toList
 | 
|  |     53 | }
 | 
|  |     54 | 
 | 
| 130 |     55 | 
 | 
|  |     56 | 
 | 
| 161 |     57 | // (2) The first function below calculates the change factor (dta) between
 | 
|  |     58 | //     a price in year n and a price in year n + 1. The second function calculates
 | 
|  |     59 | //     all change factors for all prices (from a portfolio). The input to this
 | 
|  |     60 | //     function are the nested lists created by get_prices above.
 | 
| 130 |     61 | 
 | 
|  |     62 | def get_delta(price_old: Option[Double], price_new: Option[Double]) : Option[Double] = {
 | 
| 161 |     63 | 	for( x <- price_old; y <- price_new) yield (y-x)/x
 | 
| 130 |     64 | }
 | 
|  |     65 | 
 | 
| 161 |     66 | def get_deltas(data: List[List[Option[Double]]]) :  List[List[Option[Double]]] = {
 | 
|  |     67 | 	(for( n <- 1 to data.length-1) yield (for(i <- 0 to data(n).length-1) yield  get_delta(data(n-1)(i), data(n)(i))).toList).toList
 | 
|  |     68 | }
 | 
| 130 |     69 | 
 | 
|  |     70 | 
 | 
|  |     71 | 
 | 
|  |     72 | // (3) Write a function that given change factors, a starting balance and a year
 | 
| 161 |     73 | //     calculates the yearly yield, i.e. new balance, according to our dump investment 
 | 
|  |     74 | //     strategy. Another function calculates given the same data calculates the
 | 
|  |     75 | //     compound yield up to a given year. Finally a function combines all 
 | 
|  |     76 | //     calculations by taking a portfolio, a range of years and a start balance
 | 
|  |     77 | //     as arguments.
 | 
| 130 |     78 | 
 | 
|  |     79 | 
 | 
| 161 |     80 | def yearly_yield(data: List[List[Option[Double]]], balance: Long, year: Int) : Long = {
 | 
|  |     81 | 	val increments = (for(n <- 0 to data(year).length-1 if(!(data(year)(n) == None))) yield (data(year)(n).getOrElse(0.0))).toList
 | 
|  |     82 | 	val sumi = (increments.sum).toDouble
 | 
|  |     83 | 	if(increments.length == 0){
 | 
|  |     84 | 		balance
 | 
|  |     85 | 	}else{
 | 
|  |     86 | 		val il = (increments.length).toDouble
 | 
|  |     87 | 		val averag = sumi/il
 | 
|  |     88 | 		val i = (balance + (balance*averag))
 | 
|  |     89 | 		i.toLong
 | 
|  |     90 | 	}
 | 
| 130 |     91 | }
 | 
|  |     92 | 
 | 
| 161 |     93 | def compound_yield(data: List[List[Option[Double]]], balance: Long, ye: Int) : Long = {//if(year == 0) yearly_yield(data, balance, 0) else compound_yield(data, yearly_yield(data, balance, year), year-1)
 | 
|  |     94 | 	val increments_py = (for(year <- 0 to ye) yield {
 | 
|  |     95 | 		val increments = (for(n <- 0 to data(year).length-1 if(!(data(year)(n) == None))) yield (data(year)(n).getOrElse(0.0))).toList
 | 
|  |     96 | 		val sum_of = (increments.sum).toDouble
 | 
|  |     97 | 		val number_of = (increments.length).toDouble
 | 
|  |     98 | 		sum_of/number_of + 1.0
 | 
|  |     99 | 	}).toList
 | 
|  |    100 | 	val mul_factor = increments_py.reduceLeft(_*_)
 | 
|  |    101 | 	(balance*mul_factor).toLong
 | 
|  |    102 | }
 | 
|  |    103 | def investment(portfolio: List[String], years: Range, start_balance: Long) : Long = {
 | 
|  |    104 | 	val p = get_prices(portfolio, years)
 | 
|  |    105 | 	val d = get_deltas(p)
 | 
|  |    106 | 	compound_yield(d, start_balance, d.length-1)
 | 
| 130 |    107 | }
 | 
|  |    108 | 
 | 
|  |    109 | 
 | 
|  |    110 | 
 | 
|  |    111 | //test cases for the two portfolios given above
 | 
|  |    112 | 
 | 
| 161 |    113 | investment(rstate_portfolio, 1978 to 2017, 100)
 | 
|  |    114 | investment(blchip_portfolio, 1978 to 2017, 100)
 | 
| 130 |    115 | 
 | 
| 144 |    116 | }
 |