| 
320
 | 
     1  | 
object CW6a {
 | 
| 
167
 | 
     2  | 
  | 
| 
320
 | 
     3  | 
//(1) Complete the collatz function below. It should
  | 
| 
 | 
     4  | 
//    recursively calculate the number of steps needed 
  | 
| 
 | 
     5  | 
//    until the collatz series reaches the number 1.
  | 
| 
 | 
     6  | 
//    If needed, you can use an auxiliary function that
  | 
| 
 | 
     7  | 
//    performs the recursion. The function should expect
  | 
| 
 | 
     8  | 
//    arguments in the range of 1 to 1 Million.
  | 
| 
281
 | 
     9  | 
  | 
| 
126
 | 
    10  | 
  | 
| 
320
 | 
    11  | 
// def collatz(n: Long) : Long = {
 | 
| 
 | 
    12  | 
//     if (n == 1) 1 //else
  | 
| 
 | 
    13  | 
//     // if (n % 2 == 0) {
 | 
| 
 | 
    14  | 
//     //     collatz(n/2)
  | 
| 
 | 
    15  | 
//     //     steps + 1
  | 
| 
 | 
    16  | 
//     // } //else
  | 
| 
 | 
    17  | 
//     // if (n % 2 != 0) {
 | 
| 
 | 
    18  | 
//     //     collatz((3 * n) + 1)
  | 
| 
 | 
    19  | 
//     //     steps + 1
  | 
| 
 | 
    20  | 
//     // }
  | 
| 
 | 
    21  | 
// }
  | 
| 
 | 
    22  | 
  | 
| 
 | 
    23  | 
// val steps: Long = 1
  | 
| 
 | 
    24  | 
// val lst = List()
  | 
| 
 | 
    25  | 
// def collatz(n: Long) : Long = {
 | 
| 
 | 
    26  | 
//     if  (n == 1) { steps + 1 }
 | 
| 
 | 
    27  | 
//     else if (n % 2 == 0) { 
 | 
| 
 | 
    28  | 
//         collatz(n/2);
  | 
| 
 | 
    29  | 
//     }
  | 
| 
 | 
    30  | 
//     else { 
 | 
| 
 | 
    31  | 
//         collatz((3 * n) + 1);
  | 
| 
 | 
    32  | 
//     }
  | 
| 
 | 
    33  | 
//     steps + 1
  | 
| 
 | 
    34  | 
// } 
  | 
| 
 | 
    35  | 
// collatz(6)
  | 
| 
126
 | 
    36  | 
  | 
| 
320
 | 
    37  | 
def collatz(n: Long, list: List[Long] = List()): Long = {
 | 
| 
 | 
    38  | 
    if (n == 1) {
 | 
| 
 | 
    39  | 
            n :: list
  | 
| 
 | 
    40  | 
            list.size.toLong
  | 
| 
 | 
    41  | 
    }
  | 
| 
 | 
    42  | 
    else if (n % 2 == 0) {
 | 
| 
 | 
    43  | 
        collatz(n / 2, n :: list)
  | 
| 
 | 
    44  | 
    }
  | 
| 
 | 
    45  | 
    else {
 | 
| 
 | 
    46  | 
        collatz((3 * n) + 1, n :: list)
  | 
| 
 | 
    47  | 
    }
  | 
| 
 | 
    48  | 
}   
  | 
| 
 | 
    49  | 
  | 
| 
 | 
    50  | 
val test = collatz(6)
  | 
| 
 | 
    51  | 
  | 
| 
 | 
    52  | 
//(2) Complete the collatz_max function below. It should
  | 
| 
 | 
    53  | 
//    calculate how many steps are needed for each number 
  | 
| 
 | 
    54  | 
//    from 1 up to a bound and then calculate the maximum number of
  | 
| 
 | 
    55  | 
//    steps and the corresponding number that needs that many 
  | 
| 
 | 
    56  | 
//    steps. Again, you should expect bounds in the range of 1
  | 
| 
 | 
    57  | 
//    up to 1 Million. The first component of the pair is
  | 
| 
 | 
    58  | 
//    the maximum number of steps and the second is the 
  | 
| 
 | 
    59  | 
//    corresponding number.
  | 
| 
 | 
    60  | 
  | 
| 
 | 
    61  | 
//def collatz_max(bnd: Long) : (Long, Long) = ...
  | 
| 
 | 
    62  | 
def collatz_max(bnd: Long) : (Long, Long) = {
 | 
| 
 | 
    63  | 
    val stepsTable = for (n <- (1 to bnd.toInt).toList) yield (collatz(n), n.toLong)
  | 
| 
 | 
    64  | 
    //println(stepsTable)
  | 
| 
 | 
    65  | 
    stepsTable.max
  | 
| 
126
 | 
    66  | 
}
  | 
| 
 | 
    67  | 
  | 
| 
281
 | 
    68  | 
  | 
| 
127
 | 
    69  | 
}
  | 
| 
126
 | 
    70  | 
  |