163
|
1 |
|
145
|
2 |
// Part 1 about finding and counting Knight's tours
|
|
3 |
//==================================================
|
|
4 |
|
163
|
5 |
object CW7a extends App{
|
145
|
6 |
|
|
7 |
type Pos = (Int, Int) // a position on a chessboard
|
|
8 |
type Path = List[Pos] // a path...a list of positions
|
|
9 |
|
163
|
10 |
//(1a) Complete the function that tests whether the position
|
|
11 |
// is inside the board and not yet element in the path.
|
|
12 |
|
|
13 |
//def is_legal(dim: Int, path: Path)(x: Pos) : Boolean = ...
|
145
|
14 |
|
163
|
15 |
def is_legal(dim: Int, path: Path)(x: Pos) : Boolean = {
|
|
16 |
|
|
17 |
// if ((x._1<dim && x._2<dim) && (x._1>0 || x._2>0)) false else !path.contains(x)
|
|
18 |
|
|
19 |
if (x._1 < 0 || x._2 < 0) false
|
|
20 |
else if (x._1 < dim && x._2 < dim && !path.contains(x)) true
|
|
21 |
else false
|
|
22 |
|
|
23 |
|
|
24 |
}
|
145
|
25 |
|
|
26 |
|
|
27 |
|
163
|
28 |
def legal_moves(dim: Int, path: Path, x: Pos) : List[Pos] = {
|
|
29 |
|
|
30 |
val allPossibleMoves = List((x._1+1, x._2+2), (x._1+2, x._2+1), (x._1+2, x._2-1), (x._1+1, x._2-2), (x._1-1, x._2-2), (x._1-2, x._2-1), (x._1-2, x._2+1), (x._1-1, x._2+2));
|
|
31 |
|
|
32 |
//val finalList = allPossibleMoves.filter((a=>a._1<dim && a._2<dim && x._1 >= 0 && a._2 >= 0));
|
154
|
33 |
|
163
|
34 |
val finalList = for(pos<-allPossibleMoves if(is_legal(dim,path)(pos))) yield pos;
|
|
35 |
|
|
36 |
// println("Space in board: " + dim*dim + " for dim: " + dim)
|
|
37 |
|
|
38 |
|
|
39 |
finalList.toList;
|
154
|
40 |
|
|
41 |
|
|
42 |
}
|
|
43 |
|
163
|
44 |
println(legal_moves(8, Nil, (2,2)))
|
|
45 |
println(legal_moves(8, Nil, (7,7)))
|
|
46 |
println(legal_moves(8, List((4,1), (1,0)), (2,2)))
|
|
47 |
println(legal_moves(8, List((6,6)), (7,7)))
|
|
48 |
println(legal_moves(1, Nil, (0,0)))
|
|
49 |
println(legal_moves(2, Nil, (0,0)))
|
|
50 |
println(legal_moves(3, Nil, (0,0)))
|
|
51 |
|
|
52 |
println("=================================================================================")
|
|
53 |
println("================================Comparision output===============================")
|
|
54 |
println("=================================================================================")
|
|
55 |
|
|
56 |
println(legal_moves(8, Nil, (2,2)) == List((3,4), (4,3), (4,1), (3,0), (1,0), (0,1), (0,3), (1,4)))
|
|
57 |
println(legal_moves(8, Nil, (7,7)) == List((6,5), (5,6)))
|
|
58 |
println(legal_moves(8, List((4,1), (1,0)), (2,2)) == List((3,4), (4,3), (3,0), (0,1), (0,3), (1,4)))
|
|
59 |
println(legal_moves(8, List((6,6)), (7,7)) == List((6,5), (5,6)))
|
|
60 |
println(legal_moves(1, Nil, (0,0)) == Nil)
|
|
61 |
println(legal_moves(2, Nil, (0,0)) == Nil)
|
|
62 |
println(legal_moves(3, Nil, (0,0)) == List((1,2), (2,1)))
|
|
63 |
|
145
|
64 |
|
163
|
65 |
def count_tours(dim: Int, path: Path) : Int = {
|
|
66 |
|
|
67 |
val allMovesFromCurrentPosition = legal_moves(dim, path, path.head);
|
|
68 |
|
|
69 |
if (path.length == dim*dim) 1 else {
|
|
70 |
|
|
71 |
if (allMovesFromCurrentPosition.size == 0 ) 0 else {
|
|
72 |
|
|
73 |
allMovesFromCurrentPosition.map( element => count_tours(dim, element::path)).sum
|
|
74 |
|
|
75 |
|
|
76 |
}
|
|
77 |
|
|
78 |
}
|
|
79 |
|
145
|
80 |
}
|
163
|
81 |
|
|
82 |
|
145
|
83 |
|
163
|
84 |
println ( count_tours(5, List((0,0))) )
|
|
85 |
|
|
86 |
def enum_tours(dim: Int, path: Path) : List[Path] = {
|
|
87 |
|
|
88 |
val allMovesFromCurrentPosition = legal_moves(dim, path, path.head);
|
|
89 |
|
|
90 |
if (path.length == dim*dim) List(path) else {
|
|
91 |
|
|
92 |
allMovesFromCurrentPosition.map( element => enum_tours(dim, element::path)).flatten ;
|
|
93 |
|
|
94 |
|
|
95 |
}
|
|
96 |
}
|
|
97 |
println ( enum_tours(6, List((0,2))).size)
|
145
|
98 |
}
|
|
99 |
|
163
|
100 |
|
|
101 |
|
|
102 |
|
145
|
103 |
|
163
|
104 |
|
|
105 |
|
|
106 |
//(1b) Complete the function that calculates for a position
|
|
107 |
// all legal onward moves that are not already in the path.
|
|
108 |
// The moves should be ordered in a "clockwise" manner.
|
|
109 |
|
|
110 |
//def legal_moves(dim: Int, path: Path, x: Pos) : List[Pos] = ...
|
|
111 |
|
|
112 |
|
|
113 |
|
145
|
114 |
|
163
|
115 |
//some test cases
|
|
116 |
//
|
|
117 |
//assert(legal_moves(8, Nil, (2,2)) ==
|
|
118 |
// List((3,4), (4,3), (4,1), (3,0), (1,0), (0,1), (0,3), (1,4)))
|
|
119 |
//assert(legal_moves(8, Nil, (7,7)) == List((6,5), (5,6)))
|
|
120 |
//assert(legal_moves(8, List((4,1), (1,0)), (2,2)) ==
|
|
121 |
// List((3,4), (4,3), (3,0), (0,1), (0,3), (1,4)))
|
|
122 |
//assert(legal_moves(8, List((6,6)), (7,7)) == List((6,5), (5,6)))
|
|
123 |
|
145
|
124 |
|
163
|
125 |
//(1c) Complete the two recursive functions below.
|
|
126 |
// They exhaustively search for knight's tours starting from the
|
|
127 |
// given path. The first function counts all possible tours,
|
|
128 |
// and the second collects all tours in a list of paths.
|
|
129 |
|
|
130 |
//def count_tours(dim: Int, path: Path) : Int = ...
|
|
131 |
|
|
132 |
|
|
133 |
//def enum_tours(dim: Int, path: Path) : List[Path] = ...
|