| 249 |      1 | // Shunting Yard Algorithm 
 | 
|  |      2 | // including Associativity for Operators 
 | 
|  |      3 | // =====================================
 | 
|  |      4 | 
 | 
| 401 |      5 | object C3b {
 | 
| 249 |      6 | 
 | 
|  |      7 | // type of tokens
 | 
|  |      8 | type Toks = List[String]
 | 
|  |      9 | 
 | 
|  |     10 | // helper function for splitting strings into tokens
 | 
|  |     11 | def split(s: String) : Toks = s.split(" ").toList
 | 
|  |     12 | 
 | 
|  |     13 | // left- and right-associativity
 | 
|  |     14 | abstract class Assoc
 | 
|  |     15 | case object LA extends Assoc
 | 
|  |     16 | case object RA extends Assoc
 | 
|  |     17 | 
 | 
|  |     18 | // power is right-associative,
 | 
|  |     19 | // everything else is left-associative
 | 
|  |     20 | def assoc(s: String) : Assoc = s match {
 | 
|  |     21 |   case "^" => RA
 | 
|  |     22 |   case _ => LA
 | 
|  |     23 | }
 | 
|  |     24 | 
 | 
|  |     25 | // the precedences of the operators
 | 
|  |     26 | val precs = Map("+" -> 1,
 | 
|  |     27 |   		 "-" -> 1,
 | 
|  |     28 | 		 "*" -> 2,
 | 
|  |     29 | 		 "/" -> 2,
 | 
|  |     30 |                  "^" -> 4)
 | 
|  |     31 | 
 | 
|  |     32 | // the operations in the basic version of the algorithm
 | 
|  |     33 | val ops = List("+", "-", "*", "/", "^")
 | 
|  |     34 | 
 | 
|  |     35 | // (8) Implement the extended version of the shunting yard algorithm.
 | 
|  |     36 | // This version should properly account for the fact that the power 
 | 
|  |     37 | // operation is right-associative. Apart from the extension to include
 | 
|  |     38 | // the power operation, you can make the same assumptions as in 
 | 
|  |     39 | // basic version.
 | 
|  |     40 | 
 | 
|  |     41 | def is_op(op: String) : Boolean = ops.contains(op)
 | 
|  |     42 | 
 | 
|  |     43 | def prec(op1: String, op2: String) : Boolean = assoc(op1) match {
 | 
|  |     44 |   case LA => precs(op1) <= precs(op2)
 | 
|  |     45 |   case RA => precs(op1) < precs(op2)
 | 
|  |     46 | }
 | 
|  |     47 | 
 | 
|  |     48 | def syard(toks: Toks, st: Toks = Nil, out: Toks = Nil) : Toks = (toks, st, out) match {
 | 
|  |     49 |   case (Nil, _, _) => out.reverse ::: st
 | 
|  |     50 |   case (num::in, st, out) if (num.forall(_.isDigit)) => 
 | 
|  |     51 |     syard(in, st, num :: out)
 | 
|  |     52 |   case (op1::in, op2::st, out) if (is_op(op1) && is_op(op2) && prec(op1, op2)) =>
 | 
|  |     53 |     syard(op1::in, st, op2 :: out) 
 | 
|  |     54 |   case (op1::in, st, out) if (is_op(op1)) => syard(in, op1::st, out)
 | 
|  |     55 |   case ("("::in, st, out) => syard(in, "("::st, out)
 | 
|  |     56 |   case (")"::in, op2::st, out) =>
 | 
|  |     57 |     if (op2 == "(") syard(in, st, out) else syard(")"::in, st, op2 :: out)
 | 
|  |     58 |   case (in, st, out) => {
 | 
|  |     59 |     println(s"in: ${in}   st: ${st}   out: ${out.reverse}")
 | 
|  |     60 |     Nil
 | 
|  |     61 |   }  
 | 
|  |     62 | } 
 | 
|  |     63 | 
 | 
| 401 |     64 | def op_comp(s: String, n1: Int, n2: Int) = s match {
 | 
| 249 |     65 |   case "+" => n2 + n1
 | 
|  |     66 |   case "-" => n2 - n1
 | 
|  |     67 |   case "*" => n2 * n1
 | 
|  |     68 |   case "/" => n2 / n1
 | 
| 401 |     69 |   case "^" => BigInt(n2).pow(n1).toInt
 | 
| 249 |     70 | } 
 | 
|  |     71 | 
 | 
| 401 |     72 | def compute(toks: Toks, st: List[Int] = Nil) : Int = (toks, st) match {
 | 
| 249 |     73 |   case (Nil, st) => st.head
 | 
|  |     74 |   case (op::in, n1::n2::st) if (is_op(op)) => compute(in, op_comp(op, n1, n2)::st)
 | 
|  |     75 |   case (num::in, st) => compute(in, num.toInt::st)  
 | 
|  |     76 | }
 | 
|  |     77 | 
 | 
|  |     78 | 
 | 
|  |     79 | 
 | 
|  |     80 | 
 | 
|  |     81 | //compute(syard(split("3 + 4 * ( 2 - 1 )")))   // 7
 | 
|  |     82 | //compute(syard(split("10 + 12 * 33")))       // 406
 | 
|  |     83 | //compute(syard(split("( 5 + 7 ) * 2")))      // 24
 | 
|  |     84 | //compute(syard(split("5 + 7 / 2")))          // 8
 | 
|  |     85 | //compute(syard(split("5 * 7 / 2")))          // 17
 | 
|  |     86 | //compute(syard(split("9 + 24 / ( 7 - 3 )"))) // 15
 | 
|  |     87 | 
 | 
|  |     88 | //compute(syard(split("4 ^ 3 ^ 2")))      // 262144
 | 
|  |     89 | //compute(syard(split("4 ^ ( 3 ^ 2 )")))  // 262144
 | 
|  |     90 | //compute(syard(split("( 4 ^ 3 ) ^ 2")))  // 4096
 | 
|  |     91 | //compute(syard(split("( 3 + 1 ) ^ 2 ^ 3")))   // 65536
 | 
|  |     92 | 
 | 
|  |     93 | //syard(split("3 + 4 * 8 / ( 5 - 1 ) ^ 2 ^ 3"))  // 3 4 8 * 5 1 - 2 3 ^ ^ / +
 | 
|  |     94 | //compute(syard(split("3 + 4 * 8 / ( 5 - 1 ) ^ 2 ^ 3"))) // 3
 | 
|  |     95 | 
 | 
|  |     96 | //compute(syard(split("( 3 + 1 ) ^ 2 ^ 3")))   // 65536
 | 
|  |     97 | 
 | 
|  |     98 | 
 | 
|  |     99 | 
 | 
| 300 |    100 | }
 |