| 
384
 | 
     1  | 
// Core Part about Movie Recommendations
  | 
| 
211
 | 
     2  | 
// at Danube.co.uk
  | 
| 
384
 | 
     3  | 
//===========================================
  | 
| 
379
 | 
     4  | 
  | 
| 
384
 | 
     5  | 
object CW7b {
 | 
| 
211
 | 
     6  | 
  | 
| 
 | 
     7  | 
import io.Source
  | 
| 
 | 
     8  | 
import scala.util._
  | 
| 
 | 
     9  | 
  | 
| 
329
 | 
    10  | 
  | 
| 
211
 | 
    11  | 
// (1) Implement the function get_csv_url which takes an url-string
  | 
| 
 | 
    12  | 
//     as argument and requests the corresponding file. The two urls
  | 
| 
 | 
    13  | 
//     of interest are ratings_url and movies_url, which correspond 
  | 
| 
 | 
    14  | 
//     to CSV-files.
  | 
| 
384
 | 
    15  | 
//
  | 
| 
 | 
    16  | 
//     The function should ReTurn the CSV-file appropriately broken
  | 
| 
211
 | 
    17  | 
//     up into lines, and the first line should be dropped (that is without
  | 
| 
384
 | 
    18  | 
//     the header of the CSV-file). The result is a list of strings (lines
  | 
| 
211
 | 
    19  | 
//     in the file).
  | 
| 
 | 
    20  | 
  | 
| 
 | 
    21  | 
def get_csv_url(url: String) : List[String] = {
 | 
| 
384
 | 
    22  | 
  val site = Source.fromURL(url, "ISO-8859-1")
  | 
| 
 | 
    23  | 
  val site_string = site.mkString
  | 
| 
 | 
    24  | 
  val output = (site_string.split("\n")).toList
 | 
| 
 | 
    25  | 
  output.tail
  | 
| 
211
 | 
    26  | 
}
  | 
| 
 | 
    27  | 
  | 
| 
384
 | 
    28  | 
  // get_csv_url("https://nms.kcl.ac.uk/christian.urban/ratings.csv")
 | 
| 
 | 
    29  | 
  | 
| 
 | 
    30  | 
//val ratings_url = """https://nms.kcl.ac.uk/christian.urban/ratings.csv"""
  | 
| 
 | 
    31  | 
//val movies_url = """https://nms.kcl.ac.uk/christian.urban/movies.csv"""
  | 
| 
211
 | 
    32  | 
  | 
| 
384
 | 
    33  | 
// testcases
  | 
| 
 | 
    34  | 
//-----------
  | 
| 
 | 
    35  | 
//:
  | 
| 
329
 | 
    36  | 
//val movies = get_csv_url(movies_url)
  | 
| 
384
 | 
    37  | 
  // val ratings = get_csv_url(ratings_url)
  | 
| 
211
 | 
    38  | 
  | 
| 
 | 
    39  | 
//ratings.length  // 87313
  | 
| 
 | 
    40  | 
//movies.length   // 9742
  | 
| 
 | 
    41  | 
  | 
| 
384
 | 
    42  | 
  | 
| 
 | 
    43  | 
// (2) Implement two functions that process the CSV-files from (1). The ratings
  | 
| 
 | 
    44  | 
//     function filters out all ratings below 4 and ReTurns a list of 
  | 
| 
 | 
    45  | 
//     (userID, movieID) pairs. The movies function just ReTurns a list 
  | 
| 
 | 
    46  | 
//     of (movieID, title) pairs. Note the input to these functions, that is
  | 
| 
 | 
    47  | 
//     the argument lines, will be the output of the function get_csv_url.
  | 
| 
211
 | 
    48  | 
  | 
| 
 | 
    49  | 
  | 
| 
 | 
    50  | 
def process_ratings(lines: List[String]) : List[(String, String)] = {
 | 
| 
384
 | 
    51  | 
  val filter = lines.filter(_.last.asDigit >=4)
  | 
| 
 | 
    52  | 
  val output = (for(i <- 0 until filter.length) yield ((filter(i).split(",").toList)(0), (filter(i).split(",").toList)(1))).toList
 | 
| 
 | 
    53  | 
  output
  | 
| 
211
 | 
    54  | 
}
  | 
| 
 | 
    55  | 
  | 
| 
 | 
    56  | 
def process_movies(lines: List[String]) : List[(String, String)] = {
 | 
| 
384
 | 
    57  | 
  val output = (for(i <- 0 until lines.length) yield ((lines(i).split(",").toList)(0), (lines(i).split(",").toList)(1))).toList
 | 
| 
 | 
    58  | 
  output
  | 
| 
 | 
    59  | 
}
  | 
| 
 | 
    60  | 
  | 
| 
 | 
    61  | 
  | 
| 
 | 
    62  | 
  | 
| 
 | 
    63  | 
def process_ratings2(lines: List[String]) : List[(String, String)] = {
 | 
| 
 | 
    64  | 
  for (cols <- lines.map(_.split(",").toList); 
 | 
| 
 | 
    65  | 
       if (cols(2).toFloat >= 4)) yield (cols(0), cols(1))  
  | 
| 
 | 
    66  | 
}
  | 
| 
 | 
    67  | 
  | 
| 
 | 
    68  | 
def process_movies2(lines: List[String]) : List[(String, String)] = {
 | 
| 
329
 | 
    69  | 
  for (cols <- lines.map(_.split(",").toList)) yield (cols(0), cols(1))  
 | 
| 
211
 | 
    70  | 
}
  | 
| 
 | 
    71  | 
  | 
| 
384
 | 
    72  | 
// testcases
  | 
| 
 | 
    73  | 
//-----------
  | 
| 
329
 | 
    74  | 
//val good_ratings = process_ratings(ratings)
  | 
| 
 | 
    75  | 
//val movie_names = process_movies(movies)
  | 
| 
211
 | 
    76  | 
  | 
| 
 | 
    77  | 
//good_ratings.length   //48580
  | 
| 
 | 
    78  | 
//movie_names.length    // 9742
  | 
| 
 | 
    79  | 
  | 
| 
384
 | 
    80  | 
  | 
| 
329
 | 
    81  | 
  | 
| 
 | 
    82  | 
  | 
| 
384
 | 
    83  | 
// (3) Implement a grouping function that calculates a Map
  | 
| 
 | 
    84  | 
//     containing the userIDs and all the corresponding recommendations 
  | 
| 
 | 
    85  | 
//     (list of movieIDs). This  should be implemented in a tail
  | 
| 
 | 
    86  | 
//     recursive fashion, using a Map m as accumulator. This Map m
  | 
| 
 | 
    87  | 
//     is set to Map() at the beginning of the calculation.
  | 
| 
 | 
    88  | 
  | 
| 
 | 
    89  | 
val ratings_url = """https://nms.kcl.ac.uk/christian.urban/ratings.csv"""
  | 
| 
 | 
    90  | 
val ratings = get_csv_url(ratings_url)
  | 
| 
 | 
    91  | 
val good_ratings = process_ratings(ratings)
  | 
| 
 | 
    92  | 
val v515 = good_ratings.filter(_._1 == "515")
  | 
| 
 | 
    93  | 
val v515_2 = v515.map(_._2)
  | 
| 
329
 | 
    94  | 
  | 
| 
 | 
    95  | 
def groupById(ratings: List[(String, String)], 
  | 
| 
384
 | 
    96  | 
              m: Map[String, List[String]]) : Map[String, List[String]] = {
 | 
| 
 | 
    97  | 
val users = (for((k,v) <- ratings) yield k).distinct
  | 
| 
 | 
    98  | 
val movie_ids = (for(i <- 1 to users.length) yield
  | 
| 
 | 
    99  | 
  (for ((k,v) <- ratings if(i.toString == k)) yield v).toList).toList
  | 
| 
 | 
   100  | 
  val out_map = (users zip movie_ids).toMap
  | 
| 
 | 
   101  | 
out_map
  | 
| 
 | 
   102  | 
}
  | 
| 
 | 
   103  | 
  | 
| 
 | 
   104  | 
def groupById2(ratings: List[(String, String)], 
  | 
| 
329
 | 
   105  | 
              m: Map[String, List[String]]) : Map[String, List[String]] = ratings match {
 | 
| 
 | 
   106  | 
  case Nil => m
  | 
| 
 | 
   107  | 
  case (id, mov) :: rest => {
 | 
| 
 | 
   108  | 
    val old_ratings = m.getOrElse (id, Nil)
  | 
| 
 | 
   109  | 
    val new_ratings = m + (id -> (mov :: old_ratings))
  | 
| 
384
 | 
   110  | 
    groupById2(rest, new_ratings)
  | 
| 
329
 | 
   111  | 
  }
  | 
| 
 | 
   112  | 
}
  | 
| 
 | 
   113  | 
  | 
| 
384
 | 
   114  | 
val ls0_urban = 
  | 
| 
 | 
   115  | 
  List(("1", "a"), ("1", "c"), ("1", "c"))
 | 
| 
 | 
   116  | 
  | 
| 
 | 
   117  | 
groupById(ls0_urban, Map())
  | 
| 
 | 
   118  | 
groupById2(ls0_urban, Map())
  | 
| 
 | 
   119  | 
  | 
| 
 | 
   120  | 
val ls00_urban = 
  | 
| 
 | 
   121  | 
  List(("3", "a"), ("3", "c"), ("3", "c"))
 | 
| 
 | 
   122  | 
  | 
| 
 | 
   123  | 
groupById(ls00_urban, Map())
  | 
| 
 | 
   124  | 
groupById2(ls00_urban, Map())
  | 
| 
 | 
   125  | 
  | 
| 
 | 
   126  | 
groupById(good_ratings, Map()).getOrElse("515", Nil)
 | 
| 
 | 
   127  | 
groupById2(good_ratings, Map()).getOrElse("515", Nil)
 | 
| 
 | 
   128  | 
  | 
| 
 | 
   129  | 
val ls1_urban = 
  | 
| 
 | 
   130  | 
  List(("1", "a"), ("2", "a"), 
 | 
| 
 | 
   131  | 
       ("1", "c"), ("2", "a"), ("1", "c"))
 | 
| 
 | 
   132  | 
  | 
| 
 | 
   133  | 
groupById(ls1_urban, Map())
  | 
| 
 | 
   134  | 
groupById2(ls1_urban, Map())
  | 
| 
 | 
   135  | 
  | 
| 
 | 
   136  | 
val ls2_urban = 
  | 
| 
 | 
   137  | 
  List(("1", "a"), ("1", "b"), ("2", "x"), 
 | 
| 
 | 
   138  | 
       ("3", "a"), ("2", "y"), ("3", "c"))
 | 
| 
 | 
   139  | 
  | 
| 
 | 
   140  | 
groupById(ls2_urban, Map())
  | 
| 
 | 
   141  | 
groupById2(ls2_urban, Map())
  | 
| 
 | 
   142  | 
  | 
| 
 | 
   143  | 
val ls3_urban = (1 to 1000 by 10).map(_.toString).toList
  | 
| 
 | 
   144  | 
val ls4_urban = ls3_urban zip ls3_urban.tail
  | 
| 
 | 
   145  | 
val ls5_urban = ls4_urban ::: ls4_urban.reverse
  | 
| 
 | 
   146  | 
  | 
| 
 | 
   147  | 
groupById(ls5_urban, Map()) == groupById2(ls5_urban, Map())
  | 
| 
 | 
   148  | 
  | 
| 
 | 
   149  | 
groupById(ls5_urban, Map())
  | 
| 
 | 
   150  | 
groupById2(ls5_urban, Map())
  | 
| 
 | 
   151  | 
  | 
| 
 | 
   152  | 
groupById(v515, Map())
  | 
| 
 | 
   153  | 
groupById2(v515, Map())
  | 
| 
 | 
   154  | 
  | 
| 
 | 
   155  | 
groupById(v515.take(1), Map())
  | 
| 
 | 
   156  | 
groupById2(v515.take(2), Map())
  | 
| 
 | 
   157  | 
  | 
| 
 | 
   158  | 
// testcases
  | 
| 
 | 
   159  | 
//-----------
  | 
| 
329
 | 
   160  | 
//val ratings_map = groupById(good_ratings, Map())
  | 
| 
 | 
   161  | 
//val movies_map = movie_names.toMap
  | 
| 
 | 
   162  | 
  | 
| 
384
 | 
   163  | 
//ratings_map.get("414").get.map(movies_map.get(_)).length
 | 
| 
 | 
   164  | 
//    => most prolific recommender with 1227 positive ratings
  | 
| 
 | 
   165  | 
  | 
| 
 | 
   166  | 
//ratings_map.get("475").get.map(movies_map.get(_)).length
 | 
| 
 | 
   167  | 
//    => second-most prolific recommender with 787 positive ratings
  | 
| 
 | 
   168  | 
  | 
| 
 | 
   169  | 
//ratings_map.get("214").get.map(movies_map.get(_)).length 
 | 
| 
 | 
   170  | 
//    => least prolific recommender with only 1 positive rating
  | 
| 
211
 | 
   171  | 
  | 
| 
 | 
   172  | 
  | 
| 
384
 | 
   173  | 
// (4) Implement a function that takes a ratings map and a movie_name as argument.
  | 
| 
 | 
   174  | 
//     The function calculates all suggestions containing
  | 
| 
 | 
   175  | 
//     the movie in its recommendations. It ReTurns a list of all these
  | 
| 
 | 
   176  | 
//     recommendations (each of them is a list and needs to have the movie deleted, 
  | 
| 
 | 
   177  | 
//     otherwise it might happen we recommend the same movie).
  | 
| 
211
 | 
   178  | 
  | 
| 
384
 | 
   179  | 
  | 
| 
 | 
   180  | 
def favourites(m: Map[String, List[String]], mov: String) : List[List[String]] = {
 | 
| 
 | 
   181  | 
 (for((k,v) <- m if (v.contains(mov))) yield v.filter(_!=mov).toList).toList
  | 
| 
 | 
   182  | 
}
  | 
| 
 | 
   183  | 
  | 
| 
 | 
   184  | 
def favourites2(m: Map[String, List[String]], mov: String) : List[List[String]] = 
  | 
| 
329
 | 
   185  | 
  (for (id <- m.keys.toList;
  | 
| 
 | 
   186  | 
        if m(id).contains(mov)) yield m(id).filter(_ != mov))
  | 
| 
211
 | 
   187  | 
  | 
| 
 | 
   188  | 
  | 
| 
384
 | 
   189  | 
// testcases
  | 
| 
 | 
   190  | 
//-----------
  | 
| 
211
 | 
   191  | 
// movie ID "912" -> Casablanca (1942)
  | 
| 
 | 
   192  | 
//          "858" -> Godfather
  | 
| 
 | 
   193  | 
//          "260" -> Star Wars: Episode IV - A New Hope (1977)
  | 
| 
 | 
   194  | 
  | 
| 
 | 
   195  | 
//favourites(ratings_map, "912").length  // => 80
  | 
| 
 | 
   196  | 
  | 
| 
 | 
   197  | 
// That means there are 80 users that recommend the movie with ID 912.
  | 
| 
 | 
   198  | 
// Of these 80  users, 55 gave a good rating to movie 858 and
  | 
| 
 | 
   199  | 
// 52 a good rating to movies 260, 318, 593.
  | 
| 
 | 
   200  | 
  | 
| 
 | 
   201  | 
  | 
| 
384
 | 
   202  | 
  | 
| 
329
 | 
   203  | 
// (5) Implement a suggestions function which takes a rating
  | 
| 
384
 | 
   204  | 
//     map and a movie_name as arguments. It calculates all the recommended
  | 
| 
 | 
   205  | 
//     movies sorted according to the most frequently suggested movie(s) first.
  | 
| 
 | 
   206  | 
  | 
| 
211
 | 
   207  | 
def suggestions(recs: Map[String, List[String]], 
  | 
| 
384
 | 
   208  | 
                mov_name: String) : List[String] = {
 | 
| 
 | 
   209  | 
  val flat = favourites(recs, mov_name).flatten.groupMapReduce(identity)(_ => 1)(_ + _)
  | 
| 
 | 
   210  | 
  val sorted = flat.toList.sortWith(_._2 > _._2).map(_._1)
  | 
| 
 | 
   211  | 
  sorted
  | 
| 
 | 
   212  | 
}
  | 
| 
 | 
   213  | 
  | 
| 
 | 
   214  | 
  | 
| 
 | 
   215  | 
def mapValues[S, T, R](m: Map[S, T], f: T => R) =
  | 
| 
 | 
   216  | 
  m.map { case (x, y) => (x, f(y)) }
 | 
| 
 | 
   217  | 
  | 
| 
 | 
   218  | 
def suggestions2(recs: Map[String, List[String]], 
  | 
| 
329
 | 
   219  | 
                    mov_name: String) : List[String] = {
 | 
| 
 | 
   220  | 
  val favs = favourites(recs, mov_name).flatten
  | 
| 
384
 | 
   221  | 
  val favs_counted = mapValues(favs.groupBy(identity), (v:List[String]) => v.size).toList
  | 
| 
329
 | 
   222  | 
  val favs_sorted = favs_counted.sortBy(_._2).reverse
  | 
| 
 | 
   223  | 
  favs_sorted.map(_._1)
  | 
| 
211
 | 
   224  | 
}
  | 
| 
 | 
   225  | 
  | 
| 
384
 | 
   226  | 
// testcases
  | 
| 
 | 
   227  | 
//-----------
  | 
| 
211
 | 
   228  | 
  | 
| 
 | 
   229  | 
//suggestions(ratings_map, "912")
  | 
| 
 | 
   230  | 
//suggestions(ratings_map, "912").length  
  | 
| 
 | 
   231  | 
// => 4110 suggestions with List(858, 260, 318, 593, ...)
  | 
| 
 | 
   232  | 
//    being the most frequently suggested movies
  | 
| 
 | 
   233  | 
  | 
| 
384
 | 
   234  | 
  | 
| 
 | 
   235  | 
  | 
| 
 | 
   236  | 
// (6) Implement a recommendations function which generates at most
  | 
| 
 | 
   237  | 
//     *two* of the most frequently suggested movies. It ReTurns the 
  | 
| 
 | 
   238  | 
//     actual movie names, not the movieIDs.
  | 
| 
 | 
   239  | 
  | 
| 
211
 | 
   240  | 
  | 
| 
 | 
   241  | 
def recommendations(recs: Map[String, List[String]],
  | 
| 
384
 | 
   242  | 
                    movs: Map[String, String],
  | 
| 
 | 
   243  | 
                    mov_name: String) : List[String] = {
 | 
| 
 | 
   244  | 
  val sugg = suggestions(recs, mov_name)
  | 
| 
 | 
   245  | 
  val movies = (for (i <- 0 until 2 if (i < sugg.length)) yield movs(sugg(i))).toList
  | 
| 
 | 
   246  | 
  movies
  | 
| 
 | 
   247  | 
}
  | 
| 
 | 
   248  | 
  | 
| 
211
 | 
   249  | 
  | 
| 
 | 
   250  | 
  | 
| 
 | 
   251  | 
// testcases
  | 
| 
384
 | 
   252  | 
//-----------
  | 
| 
211
 | 
   253  | 
// recommendations(ratings_map, movies_map, "912")
  | 
| 
 | 
   254  | 
//   => List(Godfather, Star Wars: Episode IV - A NewHope (1977))
  | 
| 
 | 
   255  | 
  | 
| 
384
 | 
   256  | 
//recommendations(ratings_map, movies_map, "260")
  | 
| 
211
 | 
   257  | 
//   => List(Star Wars: Episode V - The Empire Strikes Back (1980), 
  | 
| 
 | 
   258  | 
//           Star Wars: Episode VI - Return of the Jedi (1983))
  | 
| 
 | 
   259  | 
  | 
| 
 | 
   260  | 
// recommendations(ratings_map, movies_map, "2")
  | 
| 
 | 
   261  | 
//   => List(Lion King, Jurassic Park (1993))
  | 
| 
 | 
   262  | 
  | 
| 
 | 
   263  | 
// recommendations(ratings_map, movies_map, "0")
  | 
| 
 | 
   264  | 
//   => Nil
  | 
| 
 | 
   265  | 
  | 
| 
 | 
   266  | 
// recommendations(ratings_map, movies_map, "1")
  | 
| 
 | 
   267  | 
//   => List(Shawshank Redemption, Forrest Gump (1994))
  | 
| 
 | 
   268  | 
  | 
| 
 | 
   269  | 
// recommendations(ratings_map, movies_map, "4")
  | 
| 
379
 | 
   270  | 
//   => Nil  (there are three ratings for this movie in ratings.csv but they are not positive)     
  | 
| 
 | 
   271  | 
  | 
| 
384
 | 
   272  | 
  | 
| 
 | 
   273  | 
  | 
| 
379
 | 
   274  | 
// (7) Calculate the recommendations for all movies according to
  | 
| 
 | 
   275  | 
// what the recommendations function in (6) produces (this
  | 
| 
 | 
   276  | 
// can take a few seconds). Put all recommendations into a list 
  | 
| 
 | 
   277  | 
// (of strings) and count how often the strings occur in
  | 
| 
 | 
   278  | 
// this list. This produces a list of string-int pairs,
  | 
| 
 | 
   279  | 
// where the first component is the movie name and the second
  | 
| 
384
 | 
   280  | 
// is the number of how many times the movie was recommended. 
  | 
| 
379
 | 
   281  | 
// Sort all the pairs according to the number
  | 
| 
 | 
   282  | 
// of times they were recommended (most recommended movie name 
  | 
| 
 | 
   283  | 
// first).
  | 
| 
 | 
   284  | 
  | 
| 
 | 
   285  | 
def most_recommended(recs: Map[String, List[String]],
  | 
| 
 | 
   286  | 
                     movs: Map[String, String]) : List[(String, Int)] = {
 | 
| 
384
 | 
   287  | 
  val movies = (((for((k,v) <- movs) yield recommendations(recs, movs, k)).toList).flatten).groupMapReduce(identity)(_ => 1)(_ + _)
  | 
| 
 | 
   288  | 
  val sorted = movies.toList.sortWith(_._2 > _._2)
  | 
| 
 | 
   289  | 
  sorted
  | 
| 
379
 | 
   290  | 
}
  | 
| 
211
 | 
   291  | 
  | 
| 
384
 | 
   292  | 
// testcase
  | 
| 
 | 
   293  | 
//
  | 
| 
379
 | 
   294  | 
//most_recommended(ratings_map, movies_map).take(3)
  | 
| 
 | 
   295  | 
// =>
  | 
| 
 | 
   296  | 
// List((Matrix,698), 
  | 
| 
 | 
   297  | 
//      (Star Wars: Episode IV - A New Hope (1977),402), 
  | 
| 
 | 
   298  | 
//      (Jerry Maguire (1996),382))
  | 
| 
211
 | 
   299  | 
  | 
| 
379
 | 
   300  | 
  | 
| 
 | 
   301  | 
  | 
| 
384
 | 
   302  | 
}
  |