400
|
1 |
// Main Part 1 about a really dumb investment strategy
|
282
|
2 |
//=====================================================
|
|
3 |
|
208
|
4 |
|
282
|
5 |
// generate jar with
|
|
6 |
// > scala -d drumb.jar drumb.scala
|
|
7 |
|
|
8 |
|
400
|
9 |
object M1 {
|
208
|
10 |
|
|
11 |
|
|
12 |
//two test portfolios
|
|
13 |
|
|
14 |
val blchip_portfolio = List("GOOG", "AAPL", "MSFT", "IBM", "FB", "AMZN", "BIDU")
|
|
15 |
val rstate_portfolio = List("PLD", "PSA", "AMT", "AIV", "AVB", "BXP", "CCI",
|
|
16 |
"DLR", "EQIX", "EQR", "ESS", "EXR", "FRT", "HCP")
|
|
17 |
|
|
18 |
import io.Source
|
|
19 |
import scala.util._
|
|
20 |
|
|
21 |
// (1) The function below takes a stock symbol and a year as arguments.
|
|
22 |
// It should read the corresponding CSV-file and reads the January
|
|
23 |
// data from the given year. The data should be collected in a list of
|
|
24 |
// strings for each line in the CSV-file.
|
|
25 |
|
|
26 |
def get_january_data(symbol: String, year: Int) : List[String] =
|
396
|
27 |
Source.fromFile(symbol ++ ".csv")("ISO-8859-1").getLines().toList.filter(_.startsWith(year.toString))
|
208
|
28 |
|
|
29 |
|
|
30 |
//test cases
|
|
31 |
//blchip_portfolio.map(get_january_data(_, 2018))
|
|
32 |
//rstate_portfolio.map(get_january_data(_, 2018))
|
|
33 |
|
|
34 |
//get_january_data("GOOG", 1980)
|
|
35 |
//get_january_data("GOOG", 2010)
|
|
36 |
//get_january_data("FB", 2014)
|
|
37 |
|
|
38 |
//get_january_data("PLD", 1980)
|
|
39 |
//get_january_data("EQIX", 2010)
|
|
40 |
//get_january_data("ESS", 2014)
|
|
41 |
|
|
42 |
|
|
43 |
// (2) From the output of the get_january_data function, the next function
|
|
44 |
// should extract the first line (if it exists) and the corresponding
|
|
45 |
// first trading price in that year with type Option[Double]. If no line
|
|
46 |
// is generated by get_january_data then the result is None; Some if
|
|
47 |
// there is a price.
|
|
48 |
|
|
49 |
def get_first_price(symbol: String, year: Int) : Option[Double] = {
|
|
50 |
val data = Try(Some(get_january_data(symbol, year).head)) getOrElse None
|
|
51 |
data.map(_.split(",").toList(1).toDouble)
|
|
52 |
}
|
|
53 |
|
|
54 |
//test cases
|
|
55 |
//get_first_price("GOOG", 1980)
|
|
56 |
//get_first_price("GOOG", 2010)
|
|
57 |
//get_first_price("FB", 2014)
|
|
58 |
|
|
59 |
/*
|
|
60 |
for (i <- 1978 to 2018) {
|
|
61 |
println(blchip_portfolio.map(get_first_price(_, i)))
|
|
62 |
}
|
|
63 |
|
|
64 |
for (i <- 1978 to 2018) {
|
|
65 |
println(rstate_portfolio.map(get_first_price(_, i)))
|
|
66 |
}
|
|
67 |
*/
|
|
68 |
|
|
69 |
|
|
70 |
// (3) Complete the function below that obtains all first prices
|
|
71 |
// for the stock symbols from a portfolio (list of strings) and
|
|
72 |
// for the given range of years. The inner lists are for the
|
|
73 |
// stock symbols and the outer list for the years.
|
|
74 |
|
|
75 |
def get_prices(portfolio: List[String], years: Range): List[List[Option[Double]]] =
|
|
76 |
for (year <- years.toList) yield
|
|
77 |
for (symbol <- portfolio) yield get_first_price(symbol, year)
|
|
78 |
|
|
79 |
|
|
80 |
//test cases
|
|
81 |
|
266
|
82 |
//println("Task 3 data from Google and Apple in 2010 to 2012")
|
|
83 |
//val goog_aapl_prices = get_prices(List("GOOG", "AAPL"), 2010 to 2012)
|
|
84 |
//println(goog_aapl_prices.toString ++ "\n")
|
208
|
85 |
|
266
|
86 |
//val p_fb = get_prices(List("FB"), 2012 to 2014)
|
|
87 |
//val tt = get_prices(List("BIDU"), 2004 to 2008)
|
208
|
88 |
|
|
89 |
|
|
90 |
// (4) The function below calculates the change factor (delta) between
|
|
91 |
// a price in year n and a price in year n + 1.
|
|
92 |
|
|
93 |
def get_delta(price_old: Option[Double], price_new: Option[Double]) : Option[Double] = {
|
|
94 |
(price_old, price_new) match {
|
|
95 |
case (Some(x), Some(y)) => Some((y - x) / x)
|
|
96 |
case _ => None
|
|
97 |
}
|
|
98 |
}
|
|
99 |
|
|
100 |
|
|
101 |
// (5) The next function calculates all change factors for all prices (from a
|
|
102 |
// portfolio). The input to this function are the nested lists created by
|
|
103 |
// get_prices above.
|
|
104 |
|
|
105 |
def get_deltas(data: List[List[Option[Double]]]): List[List[Option[Double]]] =
|
|
106 |
for (i <- (0 until (data.length - 1)).toList) yield
|
|
107 |
for (j <- (0 until (data(0).length)).toList) yield get_delta(data(i)(j), data(i + 1)(j))
|
|
108 |
|
|
109 |
|
229
|
110 |
|
208
|
111 |
// test case using the prices calculated above
|
266
|
112 |
|
|
113 |
//println("Task 5 change prices from Google and Apple in 2010 and 2011")
|
|
114 |
//val goog_aapl_deltas = get_deltas(goog_aapl_prices)
|
|
115 |
//println(goog_aapl_deltas.toString ++ "\n")
|
|
116 |
|
208
|
117 |
//val ttd = get_deltas(tt)
|
|
118 |
|
|
119 |
|
|
120 |
// (6) Write a function that given change factors, a starting balance and an index,
|
|
121 |
// calculates the yearly yield, i.e. new balance, according to our dumb investment
|
|
122 |
// strategy. Index points to a year in the data list.
|
|
123 |
|
|
124 |
def yearly_yield(data: List[List[Option[Double]]], balance: Long, index: Int): Long = {
|
|
125 |
val somes = data(index).flatten
|
|
126 |
val somes_length = somes.length
|
|
127 |
if (somes_length == 0) balance
|
|
128 |
else {
|
|
129 |
val portion: Double = balance.toDouble / somes_length.toDouble
|
431
|
130 |
balance + (for (x <- somes) yield (x * portion)).sum.toLong
|
208
|
131 |
}
|
|
132 |
}
|
|
133 |
|
266
|
134 |
// test case using the deltas calculated above
|
|
135 |
//println("Task 6 yield from Google and Apple in 2010 with balance 100")
|
208
|
136 |
|
266
|
137 |
//val d0 = goog_aapl_deltas(0)(0)
|
|
138 |
//val d1 = goog_aapl_deltas(0)(1)
|
|
139 |
//println(s"50 * ${d0.get} + 50 * ${d1.get} = ${50.toDouble * d0.get + 50.toDouble * d1.get}")
|
|
140 |
|
|
141 |
|
|
142 |
//val goog_aapl_yield = yearly_yield(goog_aapl_deltas, 100, 0)
|
|
143 |
//println("Rounded yield: " ++ goog_aapl_yield.toString ++ "\n")
|
|
144 |
|
|
145 |
|
|
146 |
//yearly_yield(get_prices(rstate_portfolio, 2016 to 2018), 100, 2)
|
|
147 |
//get_prices(rstate_portfolio, 2016 to 2018)(2).flatten.sum
|
229
|
148 |
|
|
149 |
|
208
|
150 |
// (7) Write a function compound_yield that calculates the overall balance for a
|
|
151 |
// range of years where in each year the yearly profit is compounded to the new
|
|
152 |
// balances and then re-invested into our portfolio. For this use the function and
|
|
153 |
// results generated under (6). The function investment calls compound_yield
|
|
154 |
// with the appropriate deltas and the first index.
|
|
155 |
|
|
156 |
|
|
157 |
def compound_yield(data: List[List[Option[Double]]], balance: Long, index: Int): Long = {
|
|
158 |
if (index >= data.length) balance else {
|
|
159 |
val new_balance = yearly_yield(data, balance, index)
|
|
160 |
compound_yield(data, new_balance, index + 1)
|
|
161 |
}
|
|
162 |
}
|
|
163 |
|
|
164 |
def investment(portfolio: List[String], years: Range, start_balance: Long): Long = {
|
|
165 |
compound_yield(get_deltas(get_prices(portfolio, years)), start_balance, 0)
|
|
166 |
}
|
|
167 |
|
|
168 |
|
|
169 |
|
|
170 |
//test cases for the two portfolios given above
|
|
171 |
|
396
|
172 |
println("Real data: " + investment(rstate_portfolio, 1978 to 2019, 100))
|
|
173 |
println("Blue data: " + investment(blchip_portfolio, 1978 to 2019, 100))
|
|
174 |
|
208
|
175 |
|
|
176 |
}
|
|
177 |
|
|
178 |
|
|
179 |
|
396
|
180 |
|
|
181 |
|
|
182 |
|
|
183 |
|
|
184 |
|
|
185 |
|
|
186 |
|
|
187 |
|
|
188 |
|
|
189 |
|
|
190 |
|
|
191 |
|
|
192 |
|
|
193 |
|
|
194 |
|
431
|
195 |
|
|
196 |
|