| 284 |      1 | // Core Part about Movie Recommendations 
 | 
| 209 |      2 | // at Danube.co.uk
 | 
| 284 |      3 | //========================================
 | 
| 209 |      4 | 
 | 
|  |      5 | import io.Source
 | 
|  |      6 | import scala.util._
 | 
|  |      7 | 
 | 
|  |      8 | object CW7b { // for purposes of generating a jar
 | 
|  |      9 | 
 | 
|  |     10 | // (1) Implement the function get_csv_url which takes an url-string
 | 
|  |     11 | //     as argument and requests the corresponding file. The two urls
 | 
|  |     12 | //     of interest are ratings_url and movies_url, which correspond 
 | 
|  |     13 | //     to CSV-files.
 | 
|  |     14 | //     The function should return the CSV file appropriately broken
 | 
|  |     15 | //     up into lines, and the first line should be dropped (that is without
 | 
|  |     16 | //     the header of the CSV file). The result is a list of strings (lines
 | 
|  |     17 | //     in the file).
 | 
|  |     18 | 
 | 
|  |     19 | def get_csv_url(url: String) : List[String] = {
 | 
|  |     20 |   val csv = Source.fromURL(url)("ISO-8859-1")
 | 
|  |     21 |   csv.mkString.split("\n").toList.drop(1)
 | 
|  |     22 | }
 | 
|  |     23 | 
 | 
|  |     24 | val ratings_url = """https://nms.kcl.ac.uk/christian.urban/ratings.csv"""
 | 
|  |     25 | val movies_url = """https://nms.kcl.ac.uk/christian.urban/movies.csv"""
 | 
|  |     26 | 
 | 
|  |     27 | // test cases
 | 
|  |     28 | 
 | 
|  |     29 | //val ratings = get_csv_url(ratings_url)
 | 
|  |     30 | //val movies = get_csv_url(movies_url)
 | 
|  |     31 | 
 | 
|  |     32 | //ratings.length  // 87313
 | 
|  |     33 | //movies.length   // 9742
 | 
|  |     34 | 
 | 
|  |     35 | // (2) Implement two functions that process the CSV files. The ratings
 | 
|  |     36 | //     function filters out all ratings below 4 and returns a list of 
 | 
|  |     37 | //     (userID, movieID) pairs. The movies function just returns a list 
 | 
|  |     38 | //     of (movieId, title) pairs.
 | 
|  |     39 | 
 | 
|  |     40 | 
 | 
|  |     41 | def process_ratings(lines: List[String]) : List[(String, String)] = {
 | 
|  |     42 |   for (cols <- lines.map(_.split(",").toList); 
 | 
|  |     43 |        if (cols(2).toFloat >= 4)) yield (cols(0), cols(1))  
 | 
|  |     44 | }
 | 
|  |     45 | 
 | 
|  |     46 | def process_movies(lines: List[String]) : List[(String, String)] = {
 | 
|  |     47 |   for (cols <- lines.map(_.split(",").toList)) yield (cols(0), cols(1))  
 | 
|  |     48 | }
 | 
|  |     49 | 
 | 
|  |     50 | // test cases
 | 
|  |     51 | 
 | 
|  |     52 | //val good_ratings = process_ratings(ratings)
 | 
|  |     53 | //val movie_names = process_movies(movies)
 | 
|  |     54 | 
 | 
|  |     55 | //good_ratings.length   //48580
 | 
|  |     56 | //movie_names.length    // 9742
 | 
|  |     57 | 
 | 
|  |     58 | //==============================================
 | 
|  |     59 | // Do not change anything below, unless you want 
 | 
|  |     60 | // to submit the file for the advanced part 3!
 | 
|  |     61 | //==============================================
 | 
|  |     62 | 
 | 
|  |     63 | 
 | 
|  |     64 | // (3) Implement a grouping function that calulates a map
 | 
|  |     65 | //     containing the userIds and all the corresponding recommendations 
 | 
|  |     66 | //     (list of movieIds). This  should be implemented in a tail
 | 
|  |     67 | //     recursive fashion, using a map m as accumulator. This map
 | 
|  |     68 | //     is set to Map() at the beginning of the claculation.
 | 
|  |     69 | 
 | 
|  |     70 | def groupById(ratings: List[(String, String)], 
 | 
|  |     71 |               m: Map[String, List[String]]) : Map[String, List[String]] = ratings match {
 | 
|  |     72 |   case Nil => m
 | 
|  |     73 |   case (id, mov) :: rest => {
 | 
|  |     74 |     val old_ratings = m.getOrElse (id, Nil)
 | 
|  |     75 |     val new_ratings = m + (id -> (mov :: old_ratings))
 | 
|  |     76 |     groupById(rest, new_ratings)
 | 
|  |     77 |   }
 | 
|  |     78 | }
 | 
|  |     79 | 
 | 
|  |     80 | // test cases
 | 
|  |     81 | //val ratings_map = groupById(good_ratings, Map())
 | 
|  |     82 | //val movies_map = movie_names.toMap
 | 
|  |     83 | 
 | 
|  |     84 | //ratings_map.get("414").get.map(movies_map.get(_)) // most prolific recommender with 1227 positive ratings
 | 
|  |     85 | //ratings_map.get("474").get.map(movies_map.get(_)) // second-most prolific recommender with 787 positive ratings
 | 
|  |     86 | //ratings_map.get("214").get.map(movies_map.get(_)) // least prolific recommender with only 1 positive rating
 | 
|  |     87 | 
 | 
|  |     88 | 
 | 
|  |     89 | 
 | 
|  |     90 | //(4) Implement a function that takes a ratings map and a movie_name as argument.
 | 
|  |     91 | // The function calculates all suggestions containing
 | 
|  |     92 | // the movie mov in its recommendations. It returns a list of all these
 | 
|  |     93 | // recommendations (each of them is a list and needs to have mov deleted, 
 | 
|  |     94 | // otherwise it might happen we recommend the same movie).
 | 
|  |     95 | 
 | 
|  |     96 | def favourites(m: Map[String, List[String]], mov: String) : List[List[String]] = 
 | 
|  |     97 |   (for (id <- m.keys.toList;
 | 
|  |     98 |         if m(id).contains(mov)) yield m(id).filter(_ != mov))
 | 
|  |     99 | 
 | 
|  |    100 | 
 | 
|  |    101 | 
 | 
|  |    102 | // test cases
 | 
|  |    103 | // movie ID "912" -> Casablanca (1942)
 | 
|  |    104 | //          "858" -> Godfather
 | 
|  |    105 | //          "260" -> Star Wars: Episode IV - A New Hope (1977)
 | 
|  |    106 | 
 | 
|  |    107 | //favourites(ratings_map, "912").length  // => 80
 | 
|  |    108 | 
 | 
|  |    109 | // That means there are 80 users that recommend the movie with ID 912.
 | 
|  |    110 | // Of these 80  users, 55 gave a good rating to movie 858 and
 | 
|  |    111 | // 52 a good rating to movies 260, 318, 593.
 | 
|  |    112 | 
 | 
|  |    113 | 
 | 
|  |    114 | // (5) Implement a suggestions function which takes a rating
 | 
|  |    115 | // map and a movie_name as arguments. It calculates all the recommended
 | 
|  |    116 | // movies sorted according to the most frequently suggested movie(s) first.
 | 
|  |    117 | def suggestions(recs: Map[String, List[String]], 
 | 
|  |    118 |                     mov_name: String) : List[String] = {
 | 
|  |    119 |   val favs = favourites(recs, mov_name).flatten
 | 
| 284 |    120 |   val favs_counted = favs.groupBy(identity).view.mapValues(_.size).toList
 | 
| 209 |    121 |   val favs_sorted = favs_counted.sortBy(_._2).reverse
 | 
|  |    122 |   favs_sorted.map(_._1)
 | 
|  |    123 | }
 | 
|  |    124 | 
 | 
|  |    125 | // test cases
 | 
|  |    126 | 
 | 
|  |    127 | //suggestions(ratings_map, "912")
 | 
|  |    128 | //suggestions(ratings_map, "912").length  
 | 
|  |    129 | // => 4110 suggestions with List(858, 260, 318, 593, ...)
 | 
|  |    130 | //    being the most frequently suggested movies
 | 
|  |    131 | 
 | 
|  |    132 | // (6) Implement recommendations functions which generates at most
 | 
|  |    133 | // *two* of the most frequently suggested movies. It Returns the 
 | 
|  |    134 | // actual movie names, not the movieIDs.
 | 
|  |    135 | 
 | 
|  |    136 | def recommendations(recs: Map[String, List[String]],
 | 
|  |    137 |                    movs: Map[String, String],
 | 
|  |    138 |                    mov_name: String) : List[String] =
 | 
|  |    139 |   suggestions(recs, mov_name).take(2).map(movs.get(_).get)                 
 | 
|  |    140 | 
 | 
|  |    141 | 
 | 
|  |    142 | // testcases
 | 
|  |    143 | 
 | 
|  |    144 | // recommendations(ratings_map, movies_map, "912")
 | 
|  |    145 | //   => List(Godfather, Star Wars: Episode IV - A NewHope (1977))
 | 
|  |    146 | 
 | 
|  |    147 | //recommendations(ratings_map, movies_map, "260")
 | 
|  |    148 | //   => List(Star Wars: Episode V - The Empire Strikes Back (1980), 
 | 
|  |    149 | //           Star Wars: Episode VI - Return of the Jedi (1983))
 | 
|  |    150 | 
 | 
|  |    151 | // recommendations(ratings_map, movies_map, "2")
 | 
|  |    152 | //   => List(Lion King, Jurassic Park (1993))
 | 
|  |    153 | 
 | 
|  |    154 | // recommendations(ratings_map, movies_map, "0")
 | 
|  |    155 | //   => Nil
 | 
|  |    156 | 
 | 
|  |    157 | // recommendations(ratings_map, movies_map, "1")
 | 
|  |    158 | //   => List(Shawshank Redemption, Forrest Gump (1994))
 | 
|  |    159 | 
 | 
|  |    160 | // recommendations(ratings_map, movies_map, "4")
 | 
|  |    161 | //   => Nil  (there are three ratings fro this movie in ratings.csv but they are not positive)     
 | 
|  |    162 | 
 | 
|  |    163 | 
 | 
|  |    164 | // If you want to calculate the recomendations for all movies.
 | 
|  |    165 | // Will take a few seconds calculation time.
 | 
|  |    166 | 
 | 
|  |    167 | //val all = for (name <- movie_names.map(_._1)) yield {
 | 
|  |    168 | //  recommendations(ratings_map, movies_map, name)
 | 
|  |    169 | //}
 | 
|  |    170 | 
 | 
|  |    171 | // helper functions
 | 
|  |    172 | //List().take(2
 | 
|  |    173 | //List(1).take(2)
 | 
|  |    174 | //List(1,2).take(2)
 | 
|  |    175 | //List(1,2,3).take(2)
 | 
|  |    176 | 
 | 
|  |    177 | }
 |