221
|
1 |
// Part 1 about finding Knight's tours
|
|
2 |
//=====================================
|
220
|
3 |
|
221
|
4 |
// If you need any auxiliary function, feel free to
|
|
5 |
// implement it, but do not make any changes to the
|
|
6 |
// templates below. Also have a look whether the functions
|
|
7 |
// at the end are of any help.
|
|
8 |
|
220
|
9 |
|
222
|
10 |
|
220
|
11 |
type Pos = (Int, Int) // a position on a chessboard
|
|
12 |
type Path = List[Pos] // a path...a list of positions
|
|
13 |
|
221
|
14 |
//(1) Complete the function that tests whether the position x
|
|
15 |
// is inside the board and not yet element in the path.
|
220
|
16 |
|
222
|
17 |
def is_legal(dim: Int, path: Path, x: Pos) : Boolean = {
|
|
18 |
if ((x._1 < dim && x._2 < dim) && !(path.contains(x)))
|
|
19 |
true
|
|
20 |
else
|
|
21 |
false
|
|
22 |
}
|
221
|
23 |
|
|
24 |
|
|
25 |
|
|
26 |
//(2) Complete the function that calculates for a position x
|
|
27 |
// all legal onward moves that are not already in the path.
|
|
28 |
// The moves should be ordered in a "clockwise" manner.
|
222
|
29 |
|
221
|
30 |
|
222
|
31 |
def legal_moves(dim: Int, path: Path, x: Pos) : List[Pos] = {
|
|
32 |
val legalMovesList = List((x._1 + 1, x._2 + 2), (x._1 + 2, x._2 + 1), (x._1 + 2, x._2 - 1), (x._1 + 1, x._2 - 2), (x._1 - 1, x._2 - 2), (x._1 - 2, x._2 - 1), (x._1 - 2, x._2 + 1), (x._1 - 1, x._2 + 2))
|
221
|
33 |
|
222
|
34 |
for (i <- legalMovesList
|
|
35 |
if (is_legal(dim, path, i)))
|
|
36 |
yield i
|
|
37 |
|
221
|
38 |
}
|
|
39 |
|
222
|
40 |
|
221
|
41 |
//some test cases
|
|
42 |
//
|
222
|
43 |
//assert(legal_moves(8, Nil, (2,2)) ==
|
|
44 |
// List((3,4), (4,3), (4,1), (3,0), (1,0), (0,1), (0,3), (1,4)))
|
221
|
45 |
//assert(legal_moves(8, Nil, (7,7)) == List((6,5), (5,6)))
|
222
|
46 |
//assert(legal_moves(8, List((4,1), (1,0)), (2,2)) ==
|
|
47 |
// List((3,4), (4,3), (3,0), (0,1), (0,3), (1,4)))
|
221
|
48 |
//assert(legal_moves(8, List((6,6)), (7,7)) == List((6,5), (5,6)))
|
|
49 |
|
|
50 |
|
|
51 |
//(3) Complete the two recursive functions below.
|
|
52 |
// They exhaustively search for knight's tours starting from the
|
|
53 |
// given path. The first function counts all possible tours,
|
|
54 |
// and the second collects all tours in a list of paths.
|
|
55 |
|
|
56 |
def count_tours(dim: Int, path: Path) : Int = {
|
222
|
57 |
if (path.size == (dim ^ 2)){
|
|
58 |
List(path).size
|
|
59 |
} else {
|
|
60 |
val totalTours = legal_moves(dim, path, path.head)
|
|
61 |
totalTours.map(element => count_tours(dim, element :: path)).sum
|
|
62 |
}
|
221
|
63 |
}
|
|
64 |
|
222
|
65 |
def enum_tours(dim: Int, path: Path) : List[Path] = {
|
|
66 |
if (path.size == (dim ^ 2)){
|
|
67 |
List(path)
|
|
68 |
} else {
|
|
69 |
val totalEnums = legal_moves(dim, path, path.head)
|
|
70 |
totalEnums.map(element => enum_tours(dim, element :: path)).flatten
|
|
71 |
}
|
221
|
72 |
}
|
|
73 |
|
222
|
74 |
|
221
|
75 |
//(5) Implement a first-function that finds the first
|
|
76 |
// element, say x, in the list xs where f is not None.
|
|
77 |
// In that case Return f(x), otherwise None. If possible,
|
|
78 |
// calculate f(x) only once.
|
|
79 |
|
|
80 |
def first(xs: List[Pos], f: Pos => Option[Path]) : Option[Path] = {
|
222
|
81 |
if (xs eq Nil) {
|
|
82 |
None
|
|
83 |
} else {
|
|
84 |
if (f(xs.head) != None) {
|
|
85 |
f(xs.head)
|
|
86 |
} else {
|
|
87 |
first(xs.tail, f)
|
221
|
88 |
}
|
222
|
89 |
}
|
|
90 |
|
221
|
91 |
}
|
|
92 |
|
222
|
93 |
|
221
|
94 |
// test cases
|
|
95 |
//def foo(x: (Int, Int)) = if (x._1 > 3) Some(List(x)) else None
|
|
96 |
//
|
|
97 |
//first(List((1, 0),(2, 0),(3, 0),(4, 0)), foo) // Some(List((4,0)))
|
|
98 |
//first(List((1, 0),(2, 0),(3, 0)), foo) // None
|
|
99 |
|
|
100 |
|
|
101 |
|
|
102 |
|
|
103 |
//(6) Implement a function that uses the first-function from (5) for
|
|
104 |
// trying out onward moves, and searches recursively for a
|
|
105 |
// knight tour on a dim * dim-board.
|
|
106 |
|
|
107 |
|
222
|
108 |
//def first_tour(dim: Int, path: Path) : Option[Path] = ...
|
221
|
109 |
|
222
|
110 |
|
|
111 |
|
|
112 |
|
|
113 |
|
|
114 |
|
221
|
115 |
/* Helper functions
|
|
116 |
|
|
117 |
|
|
118 |
// for measuring time
|
220
|
119 |
def time_needed[T](code: => T) : T = {
|
|
120 |
val start = System.nanoTime()
|
|
121 |
val result = code
|
|
122 |
val end = System.nanoTime()
|
|
123 |
println(f"Time needed: ${(end - start) / 1.0e9}%3.3f secs.")
|
|
124 |
result
|
|
125 |
}
|
|
126 |
|
221
|
127 |
// can be called for example with
|
|
128 |
// time_needed(count_tours(dim, List((0, 0))))
|
|
129 |
// in order to print out the time that is needed for
|
|
130 |
// running count_tours
|
|
131 |
|
220
|
132 |
// for printing a board
|
|
133 |
def print_board(dim: Int, path: Path): Unit = {
|
|
134 |
println
|
|
135 |
for (i <- 0 until dim) {
|
|
136 |
for (j <- 0 until dim) {
|
|
137 |
print(f"${path.reverse.indexOf((j, dim - i - 1))}%3.0f ")
|
|
138 |
}
|
|
139 |
println
|
|
140 |
}
|
|
141 |
}
|
|
142 |
|
|
143 |
|
|
144 |
*/
|