121
|
1 |
// NFAs and DFAs based on Scala's partial functions
|
|
2 |
|
|
3 |
|
|
4 |
// (1) Write a polymorphic function that tests whether the
|
|
5 |
// intersection of two sets is non-empty
|
|
6 |
|
|
7 |
def share[A](a: Set[A], b: Set[A]) : Boolean =
|
|
8 |
!(a intersect b).isEmpty
|
|
9 |
|
|
10 |
share(Set(1,2,3), Set(2, 3, 4)) // true
|
|
11 |
share(Set(1,2,3), Set(4, 5, 6)) // false
|
|
12 |
|
|
13 |
|
|
14 |
// State nodes of the DFAs and NFAs
|
|
15 |
abstract class State
|
|
16 |
type States = Set[State]
|
|
17 |
|
|
18 |
// Some states for test cases
|
|
19 |
case object Q0 extends State
|
|
20 |
case object Q1 extends State
|
|
21 |
case object Q2 extends State
|
|
22 |
case object Q3 extends State
|
|
23 |
case object Q4 extends State
|
|
24 |
case object Q5 extends State
|
|
25 |
case object Q6 extends State
|
|
26 |
|
|
27 |
|
|
28 |
// Transitions for DFAs and NFAs
|
|
29 |
type Trans = PartialFunction[(State, Char), State]
|
|
30 |
type NTrans = Set[Trans]
|
|
31 |
|
|
32 |
|
|
33 |
// example transition of an DFA
|
|
34 |
val dtrans : Trans =
|
|
35 |
{ case (Q0, 'a') => Q1
|
|
36 |
case (Q0, 'b') => Q0
|
|
37 |
case (Q1, 'a') => Q2
|
|
38 |
case (Q1, 'b') => Q0
|
|
39 |
case (Q2, 'a') => Q2
|
|
40 |
case (Q2, 'b') => Q0
|
|
41 |
}
|
|
42 |
|
|
43 |
|
|
44 |
// (2) Write a function that takes a transition and a
|
|
45 |
// (state, character)-pair as arguments and produces an
|
|
46 |
// optional state (the state specified by the partial transition
|
|
47 |
// function whenever it is defined; if the transition function
|
|
48 |
// is undefined, return None.
|
|
49 |
|
|
50 |
def fire(e: Trans, qc: (State, Char)) : Option[State] =
|
|
51 |
e.lift.apply(qc)
|
|
52 |
|
|
53 |
|
|
54 |
// (3) Write a function that takes a transition, a state
|
|
55 |
// and a list of characters as arguments and produces
|
|
56 |
// the state generated by following the transitions for
|
|
57 |
// each character in the list.
|
|
58 |
|
|
59 |
def nexts(trans: Trans, q: State, s: List[Char]) : Option[State] = s match {
|
|
60 |
case Nil => Some(q)
|
|
61 |
case c::cs => fire(trans, (q, c)).flatMap(nexts(trans, _, cs))
|
|
62 |
}
|
|
63 |
|
|
64 |
|
|
65 |
|
|
66 |
// class for DFAs
|
|
67 |
case class DFA(start: State, // starting state
|
|
68 |
trans: Trans, // transition
|
|
69 |
fins: States) // final states
|
|
70 |
|
|
71 |
// (4) Write a function that tests whether a string is accepted
|
|
72 |
// by an DFA or not.
|
|
73 |
|
|
74 |
def accepts(dfa: DFA, s: String) : Boolean = nexts(dfa.trans, dfa.start, s.toList) match {
|
|
75 |
case None => false
|
|
76 |
case Some(q) => dfa.fins contains q
|
|
77 |
}
|
|
78 |
|
|
79 |
|
|
80 |
// DFA examples
|
|
81 |
|
|
82 |
val dtrans1 : Trans =
|
|
83 |
{ case (Q0, 'a') => Q0
|
|
84 |
case (Q0, 'b') => Q1
|
|
85 |
}
|
|
86 |
|
|
87 |
val dfa1 = DFA(Q0, dtrans1, Set[State](Q1))
|
|
88 |
|
|
89 |
accepts(dfa1, "aaab") // true
|
|
90 |
accepts(dfa1, "aacb") // false
|
|
91 |
|
|
92 |
|
|
93 |
// NFAs
|
|
94 |
|
|
95 |
|
|
96 |
// (5) Write a function that takes a transition set, a state
|
|
97 |
// and a character as arguments, and calculates all possible
|
|
98 |
// next states (returned as set).
|
|
99 |
|
|
100 |
def nnext(trans: NTrans, q: State, c: Char) : States = {
|
|
101 |
trans.map(fire(_, (q, c))).flatten
|
|
102 |
}
|
|
103 |
|
|
104 |
// (6) Write a function that takes a transition set, a set of states
|
|
105 |
// and a character as arguments, and calculates all possible
|
|
106 |
// next states that can be reached from any state in the set.
|
|
107 |
|
|
108 |
def nnexts(trans: NTrans, qs: States, c: Char) : States = {
|
|
109 |
qs.flatMap(nnext(trans, _, c))
|
|
110 |
}
|
|
111 |
|
|
112 |
|
|
113 |
// (7) Write a function that lifts nnexts from from single
|
|
114 |
// characters to lists of characters.
|
|
115 |
def nnextss(trans: NTrans, qs: States, s: List[Char]) : States = s match {
|
|
116 |
case Nil => qs
|
|
117 |
case c::cs => {
|
|
118 |
val ns = nnexts(trans, qs, c)
|
|
119 |
nnextss(trans, ns, cs)
|
|
120 |
}
|
|
121 |
}
|
|
122 |
|
|
123 |
// class for NFAs
|
|
124 |
case class NFA(start: States, // starting state
|
|
125 |
trans: NTrans, // transition edges
|
|
126 |
fins: States) // final states
|
|
127 |
|
|
128 |
|
|
129 |
// (8) Write a function that tests whether a string is
|
|
130 |
// accepted by an NFA or not.
|
|
131 |
|
|
132 |
def naccepts(nfa: NFA, s: String) : Boolean = {
|
|
133 |
share(nnextss(nfa.trans, nfa.start, s.toList), nfa.fins)
|
|
134 |
}
|
|
135 |
|
|
136 |
|
|
137 |
// (9) Write similar functions as in (7) and (8), but instead of
|
|
138 |
// returning states or a boolean, calculate the number of states
|
|
139 |
// that need to be followed in each step.
|
|
140 |
|
|
141 |
def max_nextss(trans: NTrans, qs: States, s: List[Char], max: Int) : Int = s match {
|
|
142 |
case Nil => max
|
|
143 |
case c::cs => {
|
|
144 |
val ns = nnexts(trans, qs, c)
|
|
145 |
val ns_size = ns.size
|
|
146 |
if (max < ns_size) max_nextss(trans, ns, cs, ns_size)
|
|
147 |
else max_nextss(trans, ns, cs, max)
|
|
148 |
}
|
|
149 |
}
|
|
150 |
|
|
151 |
def max_accepts(nfa: NFA, s: String) : Int = {
|
|
152 |
max_nextss(nfa.trans, nfa.start, s.toList, 0)
|
|
153 |
}
|
|
154 |
|
|
155 |
|
|
156 |
// NFA examples
|
|
157 |
|
|
158 |
|
|
159 |
// 1
|
|
160 |
val trans1 : NTrans = Set(
|
|
161 |
{ case (Q0, 'a') => Q1 },
|
|
162 |
{ case (Q0, _) => Q0 },
|
|
163 |
{ case (Q1, _) => Q2 },
|
|
164 |
{ case (Q2, _) => Q3 },
|
|
165 |
{ case (Q3, _) => Q4 },
|
|
166 |
{ case (Q4, 'b') => Q5 },
|
|
167 |
{ case (Q5, 'c') => Q6 }
|
|
168 |
)
|
|
169 |
|
|
170 |
val nfa1 = NFA(Set[State](Q0), trans1, Set[State](Q6))
|
|
171 |
|
|
172 |
naccepts(nfa1, "axaybzbc") // true
|
|
173 |
naccepts(nfa1, "aaaaxaybzbc") // true
|
|
174 |
naccepts(nfa1, "axaybzbd") // false
|
|
175 |
|
|
176 |
// the nfa has five states, which might be all
|
|
177 |
// active
|
|
178 |
|
|
179 |
max_accepts(nfa1, "axaybzbc") // 3
|
|
180 |
max_accepts(nfa1, "aaaaxaybzbc") // 5
|
|
181 |
max_accepts(nfa1, "axaybzbd") // 3
|
|
182 |
max_accepts(nfa1, "aaaaaaaaaaaaaxaybzbd") // 5
|
|
183 |
|
|
184 |
|
|
185 |
// 2
|
|
186 |
val trans2 : NTrans = Set(
|
|
187 |
{ case (Q0, 'a') => Q0 },
|
|
188 |
{ case (Q0, 'a') => Q1 },
|
|
189 |
{ case (Q0, 'b') => Q2 },
|
|
190 |
{ case (Q1, 'a') => Q1 },
|
|
191 |
{ case (Q2, 'b') => Q2 }
|
|
192 |
)
|
|
193 |
|
|
194 |
val nfa2 = NFA(Set[State](Q0), trans2, Set[State](Q2))
|
|
195 |
|
|
196 |
naccepts(nfa2, "aa") // false
|
|
197 |
naccepts(nfa2, "aaaaa") // false
|
|
198 |
naccepts(nfa2, "aaaaab") // true
|
|
199 |
naccepts(nfa2, "aaaaabbb") // true
|
|
200 |
naccepts(nfa2, "aaaaabbbaaa") // false
|
|
201 |
naccepts(nfa2, "ac") // false
|
|
202 |
|
|
203 |
// 3
|
|
204 |
val trans3 : NTrans = Set(
|
|
205 |
{ case (Q0, _) => Q0 },
|
|
206 |
{ case (Q0, 'a') => Q1 },
|
|
207 |
{ case (Q0, 'b') => Q3 },
|
|
208 |
{ case (Q1, 'b') => Q2 },
|
|
209 |
{ case (Q2, 'c') => Q5 },
|
|
210 |
{ case (Q3, 'c') => Q4 },
|
|
211 |
{ case (Q4, 'd') => Q5 }
|
|
212 |
)
|
|
213 |
|
|
214 |
val nfa3 = NFA(Set[State](Q0), trans3, Set[State](Q5))
|
|
215 |
|
|
216 |
naccepts(nfa3, "aaaaabc") // true
|
|
217 |
naccepts(nfa3, "aaaabcd") // true
|
|
218 |
naccepts(nfa3, "aaaaab") // false
|
|
219 |
naccepts(nfa3, "aaaabc") // true
|
|
220 |
naccepts(nfa3, "aaaaabbbaaa") // false
|
|
221 |
|
|
222 |
|