| 326 |      1 | // Preliminary Part about finding Knight's tours
 | 
|  |      2 | //===============================================
 | 
|  |      3 | 
 | 
|  |      4 | 
 | 
|  |      5 | object CW8a {
 | 
| 220 |      6 | 
 | 
| 326 |      7 | // If you need any auxiliary function, feel free to 
 | 
|  |      8 | // implement it, but do not make any changes to the
 | 
|  |      9 | // templates below. Also have a look whether the functions
 | 
|  |     10 | // at the end are of any help.
 | 
|  |     11 | 
 | 
|  |     12 | 
 | 
| 222 |     13 | 
 | 
| 220 |     14 | type Pos = (Int, Int)    // a position on a chessboard 
 | 
|  |     15 | type Path = List[Pos]    // a path...a list of positions
 | 
|  |     16 | 
 | 
| 326 |     17 | //(1) Complete the function that tests whether the position x
 | 
|  |     18 | //    is inside the board and not yet element in the path.
 | 
| 220 |     19 | 
 | 
| 326 |     20 | def is_legal(dim: Int, path: Path, x: Pos) : Boolean = { 
 | 
|  |     21 |   if ((!(path.contains(x))) && (x._1 >= 0) && (x._2 >= 0) && (x._1 < dim) && (x._2 < dim))
 | 
|  |     22 |     true
 | 
|  |     23 |   else false
 | 
|  |     24 | }
 | 
|  |     25 | 
 | 
|  |     26 | //(2) Complete the function that calculates for a position x
 | 
|  |     27 | //    all legal onward moves that are not already in the path. 
 | 
|  |     28 | //    The moves should be ordered in a "clockwise" manner.
 | 
|  |     29 |  
 | 
|  |     30 | 
 | 
|  |     31 | def legal_moves(dim: Int, path: Path, x: Pos) : List[Pos] = {//List[Pos]
 | 
|  |     32 |   val changes = List((1,2),(2,1),(2,-1),(1,-2),(-1,-2),(-2,-1),(-2,1),(-1,2))
 | 
|  |     33 |   val returnList = (for ((y,z) <- changes) yield(
 | 
|  |     34 |     //println(y,z)-2,-1
 | 
|  |     35 |     if ((is_legal(dim,path,((x._1 + y) , (x._2 + z)))) == true)
 | 
|  |     36 |       Some(x._1 + y , x._2 + z)
 | 
|  |     37 |     else
 | 
|  |     38 |       None
 | 
|  |     39 |   ))
 | 
|  |     40 |   returnList.flatten
 | 
|  |     41 | }
 | 
|  |     42 | 
 | 
|  |     43 | 
 | 
|  |     44 | //some testcases
 | 
|  |     45 | //
 | 
|  |     46 | //assert(legal_moves(8, Nil, (2,2)) == 
 | 
|  |     47 |   //List((3,4), (4,3), (4,1), (3,0), (1,0), (0,1), (0,3), (1,4)))
 | 
|  |     48 | //assert(legal_moves(8, Nil, (7,7)) == List((6,5), (5,6)))
 | 
|  |     49 | //assert(legal_moves(8, List((4,1), (1,0)), (2,2)) == 
 | 
|  |     50 | //  List((3,4), (4,3), (3,0), (0,1), (0,3), (1,4)))
 | 
|  |     51 | //assert(legal_moves(8, List((6,6)), (7,7)) == List((6,5), (5,6)))
 | 
|  |     52 | 
 | 
|  |     53 | 
 | 
|  |     54 | //(3) Complete the two recursive functions below. 
 | 
|  |     55 | //    They exhaustively search for knight's tours starting from the 
 | 
|  |     56 | //    given path. The first function counts all possible tours, 
 | 
|  |     57 | //    and the second collects all tours in a list of paths.
 | 
|  |     58 | 
 | 
|  |     59 | def count_tours(dim: Int, path: Path) : Int = (dim,path) match {//Int
 | 
|  |     60 |   case (_, Nil) => 0
 | 
|  |     61 |   case (0, path) => 0
 | 
|  |     62 |   case (dim, path) => { if (legal_moves(dim,path, path.head).size == 0) 
 | 
|  |     63 | 				if(path.size < dim*dim) 
 | 
|  |     64 | 					0 
 | 
|  |     65 | 				else 
 | 
|  |     66 | 					1
 | 
|  |     67 | 			else (for (j <- legal_moves(dim,path, path.head)) yield count_tours(dim,j::path)).sum
 | 
|  |     68 | 			}
 | 
|  |     69 | }
 | 
|  |     70 | 
 | 
|  |     71 | def enum_tours(dim: Int, path: Path) : List[Path] = (dim,path) match {
 | 
|  |     72 |   case (_, Nil) => Nil
 | 
|  |     73 |   case (0, path) => Nil
 | 
|  |     74 |   case (dim, path) =>	{ if (legal_moves(dim,path, path.head).size == 0) 
 | 
|  |     75 | 				if(path.size < dim*dim) 
 | 
|  |     76 | 					Nil
 | 
|  |     77 | 				else 
 | 
|  |     78 | 					List(path)
 | 
|  |     79 | 			else (for (j <- legal_moves(dim,path, path.head)) yield enum_tours(dim,j::path)).flatten
 | 
|  |     80 | 			}
 | 
|  |     81 | 			
 | 
|  |     82 | }
 | 
|  |     83 | 
 | 
|  |     84 | 
 | 
|  |     85 | //(4) Implement a first-function that finds the first 
 | 
|  |     86 | //    element, say x, in the list xs where f is not None. 
 | 
|  |     87 | //    In that case Return f(x), otherwise None. If possible,
 | 
|  |     88 | //    calculate f(x) only once.
 | 
|  |     89 | 
 | 
|  |     90 | //def first(xs: List[Pos], f: Pos => Option[Path]) : Option[Path] = ...
 | 
|  |     91 | 
 | 
|  |     92 | 
 | 
|  |     93 | // testcases
 | 
|  |     94 | //
 | 
|  |     95 | //def foo(x: (Int, Int)) = if (x._1 > 3) Some(List(x)) else None
 | 
|  |     96 | //
 | 
|  |     97 | //first(List((1, 0),(2, 0),(3, 0),(4, 0)), foo)   // Some(List((4,0)))
 | 
|  |     98 | //first(List((1, 0),(2, 0),(3, 0)), foo)          // None
 | 
|  |     99 | 
 | 
|  |    100 | 
 | 
|  |    101 | //(5) Implement a function that uses the first-function from (5) for
 | 
|  |    102 | //    trying out onward moves, and searches recursively for a
 | 
|  |    103 | //    knight tour on a dim * dim-board.
 | 
|  |    104 | 
 | 
|  |    105 | 
 | 
|  |    106 | //def first_tour(dim: Int, path: Path) : Option[Path] = ...
 | 
|  |    107 |  
 | 
|  |    108 | 
 | 
|  |    109 | 
 | 
|  |    110 | 
 | 
|  |    111 | 
 | 
|  |    112 | 
 | 
|  |    113 | /* Helper functions
 | 
|  |    114 | 
 | 
|  |    115 | 
 | 
|  |    116 | // for measuring time
 | 
| 220 |    117 | def time_needed[T](code: => T) : T = {
 | 
|  |    118 |   val start = System.nanoTime()
 | 
|  |    119 |   val result = code
 | 
|  |    120 |   val end = System.nanoTime()
 | 
|  |    121 |   println(f"Time needed: ${(end - start) / 1.0e9}%3.3f secs.")
 | 
|  |    122 |   result
 | 
|  |    123 | }
 | 
|  |    124 | 
 | 
| 326 |    125 | // can be called for example with
 | 
|  |    126 | //     time_needed(count_tours(dim, List((0, 0))))
 | 
|  |    127 | // in order to print out the time that is needed for 
 | 
|  |    128 | // running count_tours
 | 
|  |    129 | 
 | 
|  |    130 | 
 | 
|  |    131 | 
 | 
|  |    132 | 
 | 
| 220 |    133 | // for printing a board
 | 
|  |    134 | def print_board(dim: Int, path: Path): Unit = {
 | 
|  |    135 |   println
 | 
|  |    136 |   for (i <- 0 until dim) {
 | 
|  |    137 |     for (j <- 0 until dim) {
 | 
|  |    138 |       print(f"${path.reverse.indexOf((j, dim - i - 1))}%3.0f ")
 | 
|  |    139 |     }
 | 
|  |    140 |     println
 | 
|  |    141 |   } 
 | 
|  |    142 | }
 | 
|  |    143 | 
 | 
|  |    144 | 
 | 
|  |    145 | */
 | 
| 247 |    146 | 
 | 
|  |    147 | }
 |