| 
238
 | 
     1  | 
// Scala Lecture 5
  | 
| 
222
 | 
     2  | 
//=================
  | 
| 
 | 
     3  | 
  | 
| 
 | 
     4  | 
  | 
| 
 | 
     5  | 
  | 
| 
238
 | 
     6  | 
// Laziness with style
  | 
| 
 | 
     7  | 
//=====================
  | 
| 
222
 | 
     8  | 
  | 
| 
240
 | 
     9  | 
// The concept of lazy evaluation doesn’t really 
  | 
| 
 | 
    10  | 
// exist in non-functional languages, but it is 
  | 
| 
 | 
    11  | 
// pretty easy to grasp. Consider first 
  | 
| 
222
 | 
    12  | 
  | 
| 
238
 | 
    13  | 
def square(x: Int) = x * x
  | 
| 
222
 | 
    14  | 
  | 
| 
238
 | 
    15  | 
square(42 + 8)
  | 
| 
222
 | 
    16  | 
  | 
| 
238
 | 
    17  | 
// this is called strict evaluation
  | 
| 
222
 | 
    18  | 
  | 
| 
240
 | 
    19  | 
// say we have a pretty expensive operation
  | 
| 
238
 | 
    20  | 
def peop(n: BigInt): Boolean = peop(n + 1) 
  | 
| 
240
 | 
    21  | 
  | 
| 
238
 | 
    22  | 
val a = "foo"
  | 
| 
 | 
    23  | 
val b = "foo"
  | 
| 
222
 | 
    24  | 
  | 
| 
238
 | 
    25  | 
if (a == b || peop(0)) println("true") else println("false")
 | 
| 
222
 | 
    26  | 
  | 
| 
238
 | 
    27  | 
// this is called lazy evaluation
  | 
| 
 | 
    28  | 
// you delay compuation until it is really 
  | 
| 
 | 
    29  | 
// needed; once calculated though, does not 
  | 
| 
 | 
    30  | 
// need to be re-calculated
  | 
| 
222
 | 
    31  | 
  | 
| 
238
 | 
    32  | 
// a useful example is
  | 
| 
 | 
    33  | 
def time_needed[T](i: Int, code: => T) = {
 | 
| 
 | 
    34  | 
  val start = System.nanoTime()
  | 
| 
 | 
    35  | 
  for (j <- 1 to i) code
  | 
| 
 | 
    36  | 
  val end = System.nanoTime()
  | 
| 
 | 
    37  | 
  f"${(end - start) / (i * 1.0e9)}%.6f secs"
 | 
| 
222
 | 
    38  | 
}
  | 
| 
 | 
    39  | 
  | 
| 
 | 
    40  | 
  | 
| 
238
 | 
    41  | 
// streams (I do not care how many)
  | 
| 
 | 
    42  | 
// primes: 2, 3, 5, 7, 9, 11, 13 ....
  | 
| 
222
 | 
    43  | 
  | 
| 
238
 | 
    44  | 
def generatePrimes (s: Stream[Int]): Stream[Int] =
  | 
| 
 | 
    45  | 
  s.head #:: generatePrimes(s.tail.filter(_ % s.head != 0))
  | 
| 
 | 
    46  | 
  | 
| 
240
 | 
    47  | 
val primes = generatePrimes(Stream.from(2))
  | 
| 
222
 | 
    48  | 
  | 
| 
238
 | 
    49  | 
// the first 10 primes
  | 
| 
 | 
    50  | 
primes.take(10).toList
  | 
| 
222
 | 
    51  | 
  | 
| 
238
 | 
    52  | 
time_needed(1, primes.filter(_ > 100).take(3000).toList)
  | 
| 
 | 
    53  | 
time_needed(1, primes.filter(_ > 100).take(3000).toList)
  | 
| 
222
 | 
    54  | 
  | 
| 
240
 | 
    55  | 
// a stream of successive numbers
  | 
| 
 | 
    56  | 
Stream.from(2)
  | 
| 
222
 | 
    57  | 
  | 
| 
238
 | 
    58  | 
Stream.from(2).take(10)
  | 
| 
 | 
    59  | 
Stream.from(2).take(10).print
  | 
| 
 | 
    60  | 
Stream.from(10).take(10).print
  | 
| 
222
 | 
    61  | 
  | 
| 
238
 | 
    62  | 
Stream.from(2).take(10).force
  | 
| 
222
 | 
    63  | 
  | 
| 
240
 | 
    64  | 
// iterative version of the Fibonacci numbers
  | 
| 
238
 | 
    65  | 
def fibIter(a: BigInt, b: BigInt): Stream[BigInt] =
  | 
| 
 | 
    66  | 
  a #:: fibIter(b, a + b)
  | 
| 
222
 | 
    67  | 
  | 
| 
 | 
    68  | 
  | 
| 
238
 | 
    69  | 
fibIter(1, 1).take(10).force
  | 
| 
 | 
    70  | 
fibIter(8, 13).take(10).force
  | 
| 
 | 
    71  | 
  | 
| 
 | 
    72  | 
fibIter(1, 1).drop(10000).take(1).print
  | 
| 
222
 | 
    73  | 
  | 
| 
 | 
    74  | 
  | 
| 
238
 | 
    75  | 
// good for testing
  | 
| 
222
 | 
    76  | 
  | 
| 
 | 
    77  | 
  | 
| 
 | 
    78  | 
// Regular expressions - the power of DSLs in Scala
  | 
| 
238
 | 
    79  | 
//                                     and Laziness
  | 
| 
222
 | 
    80  | 
//==================================================
  | 
| 
 | 
    81  | 
  | 
| 
 | 
    82  | 
abstract class Rexp
  | 
| 
226
 | 
    83  | 
case object ZERO extends Rexp                     // nothing
  | 
| 
 | 
    84  | 
case object ONE extends Rexp                      // the empty string
  | 
| 
 | 
    85  | 
case class CHAR(c: Char) extends Rexp             // a character c
  | 
| 
 | 
    86  | 
case class ALT(r1: Rexp, r2: Rexp) extends Rexp   // alternative  r1 + r2
  | 
| 
 | 
    87  | 
case class SEQ(r1: Rexp, r2: Rexp) extends Rexp   // sequence     r1 . r2  
  | 
| 
 | 
    88  | 
case class STAR(r: Rexp) extends Rexp             // star         r*
  | 
| 
222
 | 
    89  | 
  | 
| 
 | 
    90  | 
  | 
| 
 | 
    91  | 
// some convenience for typing in regular expressions
  | 
| 
 | 
    92  | 
import scala.language.implicitConversions    
  | 
| 
 | 
    93  | 
import scala.language.reflectiveCalls 
  | 
| 
 | 
    94  | 
  | 
| 
 | 
    95  | 
def charlist2rexp(s: List[Char]): Rexp = s match {
 | 
| 
 | 
    96  | 
  case Nil => ONE
  | 
| 
 | 
    97  | 
  case c::Nil => CHAR(c)
  | 
| 
 | 
    98  | 
  case c::s => SEQ(CHAR(c), charlist2rexp(s))
  | 
| 
 | 
    99  | 
}
  | 
| 
224
 | 
   100  | 
implicit def string2rexp(s: String): Rexp = 
  | 
| 
 | 
   101  | 
  charlist2rexp(s.toList)
  | 
| 
222
 | 
   102  | 
  | 
| 
 | 
   103  | 
  | 
| 
 | 
   104  | 
implicit def RexpOps (r: Rexp) = new {
 | 
| 
 | 
   105  | 
  def | (s: Rexp) = ALT(r, s)
  | 
| 
 | 
   106  | 
  def % = STAR(r)
  | 
| 
 | 
   107  | 
  def ~ (s: Rexp) = SEQ(r, s)
  | 
| 
 | 
   108  | 
}
  | 
| 
 | 
   109  | 
  | 
| 
 | 
   110  | 
implicit def stringOps (s: String) = new {
 | 
| 
 | 
   111  | 
  def | (r: Rexp) = ALT(s, r)
  | 
| 
 | 
   112  | 
  def | (r: String) = ALT(s, r)
  | 
| 
 | 
   113  | 
  def % = STAR(s)
  | 
| 
 | 
   114  | 
  def ~ (r: Rexp) = SEQ(s, r)
  | 
| 
 | 
   115  | 
  def ~ (r: String) = SEQ(s, r)
  | 
| 
 | 
   116  | 
}
  | 
| 
 | 
   117  | 
  | 
| 
238
 | 
   118  | 
  | 
| 
 | 
   119  | 
def depth(r: Rexp) : Int = r match {
 | 
| 
 | 
   120  | 
  case ZERO => 0
  | 
| 
 | 
   121  | 
  case ONE => 0
  | 
| 
 | 
   122  | 
  case CHAR(_) => 0
  | 
| 
 | 
   123  | 
  case ALT(r1, r2) => Math.max(depth(r1), depth(r2)) + 1
  | 
| 
 | 
   124  | 
  case SEQ(r1, r2) => Math.max(depth(r1), depth(r2)) + 1 
  | 
| 
 | 
   125  | 
  case STAR(r1) => depth(r1) + 1
  | 
| 
 | 
   126  | 
}
  | 
| 
 | 
   127  | 
  | 
| 
222
 | 
   128  | 
//example regular expressions
  | 
| 
 | 
   129  | 
val digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
  | 
| 
 | 
   130  | 
val sign = "+" | "-" | ""
  | 
| 
 | 
   131  | 
val number = sign ~ digit ~ digit.% 
  | 
| 
 | 
   132  | 
  | 
| 
238
 | 
   133  | 
// task: enumerate exhaustively regular expression
  | 
| 
 | 
   134  | 
// starting from small ones towards bigger ones.
  | 
| 
 | 
   135  | 
  | 
| 
240
 | 
   136  | 
// 1st idea: enumerate them all in a Set
  | 
| 
 | 
   137  | 
// up to a level
  | 
| 
238
 | 
   138  | 
  | 
| 
 | 
   139  | 
def enuml(l: Int, s: String) : Set[Rexp] = l match {
 | 
| 
 | 
   140  | 
  case 0 => Set(ZERO, ONE) ++ s.map(CHAR).toSet
  | 
| 
 | 
   141  | 
  case n =>  
  | 
| 
 | 
   142  | 
    val rs = enuml(n - 1, s)
  | 
| 
 | 
   143  | 
    rs ++
  | 
| 
 | 
   144  | 
    (for (r1 <- rs; r2 <- rs) yield ALT(r1, r2)) ++
  | 
| 
 | 
   145  | 
    (for (r1 <- rs; r2 <- rs) yield SEQ(r1, r2)) ++
  | 
| 
 | 
   146  | 
    (for (r1 <- rs) yield STAR(r1))
  | 
| 
 | 
   147  | 
}
  | 
| 
 | 
   148  | 
  | 
| 
240
 | 
   149  | 
enuml(1, "a")
  | 
| 
238
 | 
   150  | 
enuml(1, "a").size
  | 
| 
 | 
   151  | 
enuml(2, "a").size
  | 
| 
240
 | 
   152  | 
enuml(3, "a").size 
  | 
| 
 | 
   153  | 
enuml(4, "a").size // out of heap space
  | 
| 
238
 | 
   154  | 
  | 
| 
 | 
   155  | 
  | 
| 
 | 
   156  | 
def enum(rs: Stream[Rexp]) : Stream[Rexp] = 
  | 
| 
 | 
   157  | 
  rs #::: enum( (for (r1 <- rs; r2 <- rs) yield ALT(r1, r2)) #:::
  | 
| 
 | 
   158  | 
                (for (r1 <- rs; r2 <- rs) yield SEQ(r1, r2)) #:::
  | 
| 
 | 
   159  | 
                (for (r1 <- rs) yield STAR(r1)) )
  | 
| 
 | 
   160  | 
  | 
| 
 | 
   161  | 
  | 
| 
 | 
   162  | 
enum(ZERO #:: ONE #:: "ab".toStream.map(CHAR)).take(200).force
  | 
| 
240
 | 
   163  | 
enum(ZERO #:: ONE #:: "ab".toStream.map(CHAR)).take(5000000)
  | 
| 
238
 | 
   164  | 
  | 
| 
 | 
   165  | 
  | 
| 
 | 
   166  | 
val is = 
  | 
| 
 | 
   167  | 
  (enum(ZERO #:: ONE #:: "ab".toStream.map(CHAR))
  | 
| 
 | 
   168  | 
    .dropWhile(depth(_) < 3)
  | 
| 
 | 
   169  | 
    .take(10).foreach(println))
  | 
| 
 | 
   170  | 
  | 
| 
 | 
   171  | 
  | 
| 
 | 
   172  | 
  | 
| 
 | 
   173  | 
// Parsing - The Solved Problem That Isn't
  | 
| 
 | 
   174  | 
//=========================================
  | 
| 
 | 
   175  | 
//
  | 
| 
 | 
   176  | 
// https://tratt.net/laurie/blog/entries/parsing_the_solved_problem_that_isnt.html
  | 
| 
 | 
   177  | 
//
  | 
| 
 | 
   178  | 
// Or, A topic of endless "fun"(?)
  | 
| 
 | 
   179  | 
  | 
| 
 | 
   180  | 
  | 
| 
 | 
   181  | 
// input type: String
  | 
| 
 | 
   182  | 
// output type: Int
  | 
| 
 | 
   183  | 
Integer.parseInt("123456")
 | 
| 
 | 
   184  | 
  | 
| 
 | 
   185  | 
/* Note, in the previous lectures I did not show the type consraint
  | 
| 
 | 
   186  | 
 * I <% Seq[_] , which means that the input type I can be
  | 
| 
 | 
   187  | 
 * treated, or seen, as a sequence. */
  | 
| 
 | 
   188  | 
  | 
| 
 | 
   189  | 
abstract class Parser[I <% Seq[_], T] {
 | 
| 
 | 
   190  | 
  def parse(ts: I): Set[(T, I)]
  | 
| 
 | 
   191  | 
  | 
| 
 | 
   192  | 
  def parse_all(ts: I) : Set[T] =
  | 
| 
 | 
   193  | 
    for ((head, tail) <- parse(ts); 
  | 
| 
 | 
   194  | 
        if (tail.isEmpty)) yield head
  | 
| 
 | 
   195  | 
}
  | 
| 
 | 
   196  | 
  | 
| 
 | 
   197  | 
// the idea is that a parser can parse something
  | 
| 
 | 
   198  | 
// from the input and leaves something unparsed => pairs
  | 
| 
 | 
   199  | 
  | 
| 
 | 
   200  | 
class AltParser[I <% Seq[_], T](
  | 
| 
 | 
   201  | 
  p: => Parser[I, T], 
  | 
| 
 | 
   202  | 
  q: => Parser[I, T]) extends Parser[I, T] {
 | 
| 
 | 
   203  | 
  | 
| 
 | 
   204  | 
  def parse(sb: I) = p.parse(sb) ++ q.parse(sb)   
  | 
| 
 | 
   205  | 
}
  | 
| 
 | 
   206  | 
  | 
| 
 | 
   207  | 
  | 
| 
 | 
   208  | 
class SeqParser[I <% Seq[_], T, S](
  | 
| 
 | 
   209  | 
  p: => Parser[I, T], 
  | 
| 
 | 
   210  | 
  q: => Parser[I, S]) extends Parser[I, (T, S)] {
 | 
| 
 | 
   211  | 
  | 
| 
 | 
   212  | 
  def parse(sb: I) = 
  | 
| 
 | 
   213  | 
    for ((head1, tail1) <- p.parse(sb); 
  | 
| 
 | 
   214  | 
         (head2, tail2) <- q.parse(tail1)) yield ((head1, head2), tail2)
  | 
| 
 | 
   215  | 
}
  | 
| 
 | 
   216  | 
  | 
| 
 | 
   217  | 
  | 
| 
 | 
   218  | 
class FunParser[I <% Seq[_], T, S](
  | 
| 
 | 
   219  | 
  p: => Parser[I, T], 
  | 
| 
 | 
   220  | 
  f: T => S) extends Parser[I, S] {
 | 
| 
 | 
   221  | 
  | 
| 
 | 
   222  | 
  def parse(sb: I) = 
  | 
| 
 | 
   223  | 
    for ((head, tail) <- p.parse(sb)) yield (f(head), tail)
  | 
| 
 | 
   224  | 
}
  | 
| 
 | 
   225  | 
  | 
| 
 | 
   226  | 
  | 
| 
 | 
   227  | 
implicit def ParserOps[I<% Seq[_], T](p: Parser[I, T]) = new {
 | 
| 
 | 
   228  | 
  def | (q : => Parser[I, T]) = new AltParser[I, T](p, q)
  | 
| 
 | 
   229  | 
  def ==>[S] (f: => T => S) = new FunParser[I, T, S](p, f)
  | 
| 
 | 
   230  | 
  def ~[S] (q : => Parser[I, S]) = new SeqParser[I, T, S](p, q)
  | 
| 
 | 
   231  | 
}
  | 
| 
 | 
   232  | 
  | 
| 
 | 
   233  | 
implicit def StringOps(s: String) = new {
 | 
| 
 | 
   234  | 
  def | (q : => Parser[String, String]) = new AltParser[String, String](s, q)
  | 
| 
 | 
   235  | 
  def | (r: String) = new AltParser[String, String](s, r)
  | 
| 
 | 
   236  | 
  def ==>[S] (f: => String => S) = new FunParser[String, String, S](s, f)
  | 
| 
 | 
   237  | 
  def ~[S] (q : => Parser[String, S]) = 
  | 
| 
 | 
   238  | 
    new SeqParser[String, String, S](s, q)
  | 
| 
 | 
   239  | 
  def ~ (r: String) = 
  | 
| 
 | 
   240  | 
    new SeqParser[String, String, String](s, r)
  | 
| 
 | 
   241  | 
}
  | 
| 
222
 | 
   242  | 
  | 
| 
 | 
   243  | 
  | 
| 
238
 | 
   244  | 
// atomic parsers  
  | 
| 
 | 
   245  | 
case class CharParser(c: Char) extends Parser[String, Char] {
 | 
| 
 | 
   246  | 
  def parse(sb: String) = 
  | 
| 
 | 
   247  | 
    if (sb != "" && sb.head == c) Set((c, sb.tail)) else Set()
  | 
| 
 | 
   248  | 
}
  | 
| 
 | 
   249  | 
  | 
| 
 | 
   250  | 
import scala.util.matching.Regex
  | 
| 
 | 
   251  | 
case class RegexParser(reg: Regex) extends Parser[String, String] {
 | 
| 
 | 
   252  | 
  def parse(sb: String) = reg.findPrefixMatchOf(sb) match {
 | 
| 
 | 
   253  | 
    case None => Set()
  | 
| 
 | 
   254  | 
    case Some(m) => Set((m.matched, m.after.toString))  
  | 
| 
 | 
   255  | 
  }
  | 
| 
 | 
   256  | 
}
  | 
| 
 | 
   257  | 
  | 
| 
 | 
   258  | 
val NumParser = RegexParser("[0-9]+".r)
 | 
| 
 | 
   259  | 
def StringParser(s: String) = RegexParser(Regex.quote(s).r)
  | 
| 
 | 
   260  | 
  | 
| 
 | 
   261  | 
println(NumParser.parse_all("12345"))
 | 
| 
 | 
   262  | 
println(NumParser.parse_all("12u45"))
 | 
| 
222
 | 
   263  | 
  | 
| 
238
 | 
   264  | 
  | 
| 
 | 
   265  | 
// convenience
  | 
| 
 | 
   266  | 
implicit def string2parser(s: String) = StringParser(s)
  | 
| 
 | 
   267  | 
implicit def char2parser(c: Char) = CharParser(c)
  | 
| 
 | 
   268  | 
  | 
| 
 | 
   269  | 
implicit def ParserOps[I<% Seq[_], T](p: Parser[I, T]) = new {
 | 
| 
 | 
   270  | 
  def | (q : => Parser[I, T]) = new AltParser[I, T](p, q)
  | 
| 
 | 
   271  | 
  def ==>[S] (f: => T => S) = new FunParser[I, T, S](p, f)
  | 
| 
 | 
   272  | 
  def ~[S] (q : => Parser[I, S]) = new SeqParser[I, T, S](p, q)
  | 
| 
 | 
   273  | 
}
  | 
| 
 | 
   274  | 
  | 
| 
 | 
   275  | 
implicit def StringOps(s: String) = new {
 | 
| 
 | 
   276  | 
  def | (q : => Parser[String, String]) = new AltParser[String, String](s, q)
  | 
| 
 | 
   277  | 
  def | (r: String) = new AltParser[String, String](s, r)
  | 
| 
 | 
   278  | 
  def ==>[S] (f: => String => S) = new FunParser[String, String, S](s, f)
  | 
| 
 | 
   279  | 
  def ~[S] (q : => Parser[String, S]) = 
  | 
| 
 | 
   280  | 
    new SeqParser[String, String, S](s, q)
  | 
| 
 | 
   281  | 
  def ~ (r: String) = 
  | 
| 
 | 
   282  | 
    new SeqParser[String, String, String](s, r)
  | 
| 
222
 | 
   283  | 
}
  | 
| 
 | 
   284  | 
  | 
| 
238
 | 
   285  | 
  | 
| 
 | 
   286  | 
val NumParserInt = NumParser ==> (s => s.toInt)
  | 
| 
 | 
   287  | 
  | 
| 
 | 
   288  | 
NumParser.parse_all("12345")
 | 
| 
 | 
   289  | 
NumParserInt.parse_all("12345")
 | 
| 
 | 
   290  | 
NumParserInt.parse_all("12u45")
 | 
| 
 | 
   291  | 
  | 
| 
 | 
   292  | 
  | 
| 
 | 
   293  | 
// grammar for arithmetic expressions
  | 
| 
 | 
   294  | 
//
  | 
| 
 | 
   295  | 
//  E ::= T + E | T - E | T
  | 
| 
 | 
   296  | 
//  T ::= F * T | F
  | 
| 
 | 
   297  | 
//  F ::= ( E ) | Number
  | 
| 
 | 
   298  | 
  | 
| 
 | 
   299  | 
  | 
| 
 | 
   300  | 
lazy val E: Parser[String, Int] = 
  | 
| 
 | 
   301  | 
  (T ~ "+" ~ E) ==> { case ((x, y), z) => x + z } |
 | 
| 
 | 
   302  | 
  (T ~ "-" ~ E) ==> { case ((x, y), z) => x - z } | T 
 | 
| 
 | 
   303  | 
lazy val T: Parser[String, Int] = 
  | 
| 
 | 
   304  | 
  (F ~ "*" ~ T) ==> { case ((x, y), z) => x * z } | F
 | 
| 
 | 
   305  | 
lazy val F: Parser[String, Int] = 
  | 
| 
 | 
   306  | 
  ("(" ~ E ~ ")") ==> { case ((x, y), z) => y } | NumParserInt
 | 
| 
 | 
   307  | 
  | 
| 
 | 
   308  | 
println(E.parse_all("1+3+4"))
 | 
| 
 | 
   309  | 
println(E.parse_all("4*2+3"))
 | 
| 
 | 
   310  | 
println(E.parse_all("4*(2+3)"))
 | 
| 
 | 
   311  | 
println(E.parse_all("(4)*((2+3))"))
 | 
| 
 | 
   312  | 
println(E.parse_all("4/2+3"))
 | 
| 
 | 
   313  | 
println(E.parse_all("(1+2)+3"))
 | 
| 
 | 
   314  | 
println(E.parse_all("1+2+3")) 
 | 
| 
 | 
   315  | 
  | 
| 
 | 
   316  | 
  | 
| 
 | 
   317  | 
  | 
| 
 | 
   318  | 
  | 
| 
222
 | 
   319  | 
  | 
| 
240
 | 
   320  | 
// The End ... Almost Christmas
  | 
| 
238
 | 
   321  | 
//===============================
  | 
| 
 | 
   322  | 
  | 
| 
 | 
   323  | 
// I hope you had fun!
  | 
| 
 | 
   324  | 
  | 
| 
 | 
   325  | 
// A function should do one thing, and only one thing.
  | 
| 
 | 
   326  | 
  | 
| 
 | 
   327  | 
// Make your variables immutable, unless there's a good 
  | 
| 
 | 
   328  | 
// reason not to.
  | 
| 
 | 
   329  | 
  | 
| 
 | 
   330  | 
// I did it, but this is actually not a good reason:
  | 
| 
240
 | 
   331  | 
// generating new labels:
  | 
| 
 | 
   332  | 
  | 
| 
238
 | 
   333  | 
var counter = -1
  | 
| 
222
 | 
   334  | 
  | 
| 
238
 | 
   335  | 
def Fresh(x: String) = {
 | 
| 
 | 
   336  | 
  counter += 1
  | 
| 
 | 
   337  | 
  x ++ "_" ++ counter.toString()
  | 
| 
 | 
   338  | 
}
  | 
| 
 | 
   339  | 
  | 
| 
 | 
   340  | 
Fresh("x")
 | 
| 
 | 
   341  | 
Fresh("x")
 | 
| 
 | 
   342  | 
  | 
| 
 | 
   343  | 
  | 
| 
 | 
   344  | 
  | 
| 
 | 
   345  | 
// You can be productive on Day 1, but the language is deep.
  | 
| 
 | 
   346  | 
//
  | 
| 
 | 
   347  | 
// http://scalapuzzlers.com
  | 
| 
 | 
   348  | 
//
  | 
| 
 | 
   349  | 
// http://www.latkin.org/blog/2017/05/02/when-the-scala-compiler-doesnt-help/
  | 
| 
 | 
   350  | 
  | 
| 
 | 
   351  | 
List(1, 2, 3) contains "your mom"
  | 
| 
 | 
   352  | 
  | 
| 
 | 
   353  | 
// I like best about Scala that it lets me often write
  | 
| 
 | 
   354  | 
// concise, readable code. And it hooks up with the 
  | 
| 
 | 
   355  | 
// Isabelle theorem prover.
  | 
| 
 | 
   356  | 
  |