363
|
1 |
// Basic Part about the 3n+1 conjecture
|
|
2 |
//==================================
|
|
3 |
|
|
4 |
// generate jar with
|
|
5 |
// > scala -d collatz.jar collatz.scala
|
|
6 |
|
|
7 |
object CW6a { // for purposes of generating a jar
|
208
|
8 |
|
363
|
9 |
/*
|
|
10 |
def collatz(n: Long): Long =
|
|
11 |
if (n == 1) 0 else
|
|
12 |
if (n % 2 == 0) 1 + collatz(n / 2) else
|
|
13 |
1 + collatz(3 * n + 1)
|
|
14 |
*/
|
208
|
15 |
|
363
|
16 |
def aux(n: Long, acc: Long) : Long =
|
|
17 |
if (n == 1) acc else
|
|
18 |
if (n % 2 == 0) aux(n / 2, acc + 1) else
|
|
19 |
aux(3 * n + 1, acc + 1)
|
208
|
20 |
|
|
21 |
|
363
|
22 |
def collatz(n: Long): Long = aux(n, 0)
|
|
23 |
|
|
24 |
def collatz_max(bnd: Long): (Long, Long) = {
|
|
25 |
val all = for (i <- (1L to bnd)) yield (collatz(i), i)
|
|
26 |
all.maxBy(_._1)
|
|
27 |
}
|
208
|
28 |
|
363
|
29 |
//collatz_max(1000000)
|
|
30 |
//collatz_max(10000000)
|
|
31 |
//collatz_max(100000000)
|
|
32 |
|
|
33 |
/* some test cases
|
|
34 |
val bnds = List(10, 100, 1000, 10000, 100000, 1000000)
|
208
|
35 |
|
363
|
36 |
for (bnd <- bnds) {
|
|
37 |
val (steps, max) = collatz_max(bnd)
|
|
38 |
println(s"In the range of 1 - ${bnd} the number ${max} needs the maximum steps of ${steps}")
|
|
39 |
}
|
|
40 |
|
|
41 |
*/
|
208
|
42 |
|
363
|
43 |
def is_pow(n: Long) : Boolean = (n & (n - 1)) == 0
|
|
44 |
|
|
45 |
def is_hard(n: Long) : Boolean = is_pow(3 * n + 1)
|
|
46 |
|
|
47 |
def last_odd(n: Long) : Long =
|
|
48 |
if (is_hard(n)) n else
|
|
49 |
if (n % 2 == 0) last_odd(n / 2) else
|
|
50 |
last_odd(3 * n + 1)
|
335
|
51 |
|
|
52 |
|
363
|
53 |
//for (i <- 130 to 10000) println(s"$i: ${last_odd(i)}")
|
|
54 |
//for (i <- 1 to 100) println(s"$i: ${collatz(i)}")
|
|
55 |
|
|
56 |
}
|
335
|
57 |
|
|
58 |
|
|
59 |
|