| 
460
 | 
     1  | 
import scala.annotation.tailrec
  | 
| 
401
 | 
     2  | 
// Core Part 1 about the 3n+1 conjecture
  | 
| 
430
 | 
     3  | 
//============================================
  | 
| 
 | 
     4  | 
  | 
| 
 | 
     5  | 
object C1 {
 | 
| 
 | 
     6  | 
  | 
| 
460
 | 
     7  | 
@tailrec
  | 
| 
 | 
     8  | 
private def collatz(n: Long, steps: Long = 0): Long = {
 | 
| 
 | 
     9  | 
  if (n == 1) steps
  | 
| 
 | 
    10  | 
  else if (n % 2 == 0) collatz(n / 2, steps + 1)
  | 
| 
 | 
    11  | 
  else collatz(n * 3 + 1, steps + 1)
  | 
| 
 | 
    12  | 
}
  | 
| 
208
 | 
    13  | 
  | 
| 
460
 | 
    14  | 
def collatz_max(upper: Long): (Long, Long) = {
 | 
| 
 | 
    15  | 
  (1L to upper).map(n => (collatz(n), n)).maxBy(_._1)
  | 
| 
363
 | 
    16  | 
}
  | 
| 
208
 | 
    17  | 
  | 
| 
 | 
    18  | 
  | 
| 
460
 | 
    19  | 
private def is_pow_of_two(n: Long) : Boolean = {
 | 
| 
 | 
    20  | 
  (n & (n - 1)) == 0
  | 
| 
 | 
    21  | 
}
  | 
| 
363
 | 
    22  | 
  | 
| 
460
 | 
    23  | 
private def is_hard(n: Long) : Boolean = {
 | 
| 
 | 
    24  | 
  is_pow_of_two(3 * n + 1)
  | 
| 
 | 
    25  | 
}
  | 
| 
363
 | 
    26  | 
  | 
| 
460
 | 
    27  | 
  | 
| 
 | 
    28  | 
private def last_odd(n: Long): Long = {
 | 
| 
 | 
    29  | 
  (1L to n).filter(is_hard).max
  | 
| 
 | 
    30  | 
}
  | 
| 
335
 | 
    31  | 
  | 
| 
363
 | 
    32  | 
}
  | 
| 
335
 | 
    33  | 
  | 
| 
 | 
    34  | 
  | 
| 
 | 
    35  | 
  | 
| 
430
 | 
    36  | 
// This template code is subject to copyright 
  | 
| 
 | 
    37  | 
// by King's College London, 2022. Do not 
  | 
| 
 | 
    38  | 
// make the template code public in any shape 
  | 
| 
 | 
    39  | 
// or form, and do not exchange it with other 
  | 
| 
 | 
    40  | 
// students under any circumstance.
  |