| 222 |      1 | // Scala Lecture 4
 | 
|  |      2 | //=================
 | 
|  |      3 | 
 | 
|  |      4 | 
 | 
|  |      5 | // Polymorphic Types
 | 
|  |      6 | //===================
 | 
|  |      7 | 
 | 
|  |      8 | // You do not want to write functions like contains, first, 
 | 
|  |      9 | // length and so on for every type of lists.
 | 
|  |     10 | 
 | 
|  |     11 | 
 | 
| 224 |     12 | 
 | 
|  |     13 | 
 | 
|  |     14 | 
 | 
|  |     15 | 
 | 
|  |     16 | 
 | 
|  |     17 | 
 | 
|  |     18 | 
 | 
|  |     19 | 
 | 
|  |     20 | 
 | 
|  |     21 | 
 | 
|  |     22 | 
 | 
|  |     23 | 
 | 
|  |     24 | 
 | 
|  |     25 | 
 | 
|  |     26 | 
 | 
| 222 |     27 | def length_string_list(lst: List[String]): Int = lst match {
 | 
|  |     28 |   case Nil => 0
 | 
|  |     29 |   case x::xs => 1 + length_string_list(xs)
 | 
|  |     30 | }
 | 
|  |     31 | 
 | 
|  |     32 | def length_int_list(lst: List[Int]): Int = lst match {
 | 
|  |     33 |   case Nil => 0
 | 
|  |     34 |   case x::xs => 1 + length_int_list(xs)
 | 
|  |     35 | }
 | 
|  |     36 | 
 | 
|  |     37 | length_string_list(List("1", "2", "3", "4"))
 | 
|  |     38 | length_int_list(List(1, 2, 3, 4))
 | 
|  |     39 | 
 | 
|  |     40 | //-----
 | 
|  |     41 | def length[A](lst: List[A]): Int = lst match {
 | 
|  |     42 |   case Nil => 0
 | 
|  |     43 |   case x::xs => 1 + length(xs)
 | 
|  |     44 | }
 | 
|  |     45 | length(List("1", "2", "3", "4"))
 | 
|  |     46 | length(List(1, 2, 3, 4))
 | 
|  |     47 | 
 | 
|  |     48 | 
 | 
|  |     49 | def map[A, B](lst: List[A], f: A => B): List[B] = lst match {
 | 
|  |     50 |   case Nil => Nil
 | 
|  |     51 |   case x::xs => f(x)::map(xs, f) 
 | 
|  |     52 | }
 | 
|  |     53 | 
 | 
|  |     54 | map(List(1, 2, 3, 4), (x: Int) => x * x)
 | 
|  |     55 | 
 | 
|  |     56 | 
 | 
|  |     57 | // Remember?
 | 
|  |     58 | def first[A, B](xs: List[A], f: A => Option[B]) : Option[B] = ...
 | 
|  |     59 | 
 | 
|  |     60 | 
 | 
|  |     61 | // distinct / distinctBy
 | 
|  |     62 | 
 | 
|  |     63 | val ls = List(1,2,3,3,2,4,3,2,1)
 | 
|  |     64 | ls.distinct
 | 
|  |     65 | 
 | 
|  |     66 | 
 | 
| 223 |     67 | def distinctBy[B, C](xs: List[B], 
 | 
|  |     68 |                      f: B => C, 
 | 
|  |     69 |                      acc: List[C] = Nil): List[B] = xs match {
 | 
| 218 |     70 |   case Nil => Nil
 | 
| 223 |     71 |   case x::xs => {
 | 
| 218 |     72 |     val res = f(x)
 | 
|  |     73 |     if (acc.contains(res)) distinctBy(xs, f, acc)  
 | 
|  |     74 |     else x::distinctBy(xs, f, res::acc)
 | 
|  |     75 |   }
 | 
|  |     76 | } 
 | 
|  |     77 | 
 | 
| 223 |     78 | // distinctBy  with the identity function is 
 | 
|  |     79 | // just distinct
 | 
| 222 |     80 | distinctBy(ls, (x: Int) => x)
 | 
|  |     81 | 
 | 
|  |     82 | 
 | 
|  |     83 | val cs = List('A', 'b', 'a', 'c', 'B', 'D', 'd')
 | 
|  |     84 | 
 | 
|  |     85 | distinctBy(cs, (c:Char) => c.toUpper)
 | 
|  |     86 | 
 | 
|  |     87 | 
 | 
|  |     88 | 
 | 
|  |     89 | // Type inference is local in Scala
 | 
|  |     90 | 
 | 
|  |     91 | def id[T](x: T) : T = x
 | 
|  |     92 | 
 | 
|  |     93 | val x = id(322)          // Int
 | 
|  |     94 | val y = id("hey")        // String
 | 
|  |     95 | val z = id(Set(1,2,3,4)) // Set[Int]
 | 
|  |     96 | 
 | 
|  |     97 | 
 | 
|  |     98 | 
 | 
|  |     99 | // The type variable concept in Scala can get really complicated.
 | 
|  |    100 | //
 | 
|  |    101 | // - variance (OO)
 | 
|  |    102 | // - bounds (subtyping)
 | 
|  |    103 | // - quantification
 | 
|  |    104 | 
 | 
|  |    105 | // Java has issues with this too: Java allows
 | 
| 223 |    106 | // to write the following incorrect code, and
 | 
|  |    107 | // only recovers by raising an exception
 | 
|  |    108 | // at runtime.
 | 
| 222 |    109 | 
 | 
| 223 |    110 | // Object[] arr = new Integer[10];
 | 
|  |    111 | // arr[0] = "Hello World";
 | 
| 222 |    112 | 
 | 
|  |    113 | 
 | 
|  |    114 | // Scala gives you a compile-time error
 | 
|  |    115 | 
 | 
|  |    116 | var arr = Array[Int]()
 | 
|  |    117 | arr(0) = "Hello World"
 | 
|  |    118 | 
 | 
|  |    119 | 
 | 
|  |    120 | 
 | 
|  |    121 | 
 | 
|  |    122 | 
 | 
|  |    123 | 
 | 
|  |    124 | //
 | 
|  |    125 | // Object Oriented Programming in Scala
 | 
|  |    126 | //
 | 
|  |    127 | // =====================================
 | 
|  |    128 | 
 | 
|  |    129 | abstract class Animal
 | 
|  |    130 | case class Bird(name: String) extends Animal
 | 
|  |    131 | case class Mammal(name: String) extends Animal
 | 
|  |    132 | case class Reptile(name: String) extends Animal
 | 
|  |    133 | 
 | 
| 223 |    134 | println(Bird("Sparrow"))
 | 
| 222 |    135 | println(Bird("Sparrow").toString)
 | 
|  |    136 | 
 | 
|  |    137 | 
 | 
|  |    138 | // you can override methods
 | 
|  |    139 | case class Bird(name: String) extends Animal {
 | 
|  |    140 |   override def toString = name
 | 
|  |    141 | }
 | 
|  |    142 | 
 | 
|  |    143 | 
 | 
|  |    144 | // There is a very convenient short-hand notation
 | 
|  |    145 | // for constructors
 | 
|  |    146 | 
 | 
|  |    147 | class Fraction(x: Int, y: Int) {
 | 
|  |    148 |   def numer = x
 | 
|  |    149 |   def denom = y
 | 
|  |    150 | }
 | 
|  |    151 | 
 | 
|  |    152 | 
 | 
|  |    153 | case class Fraction(numer: Int, denom: Int)
 | 
|  |    154 | 
 | 
|  |    155 | val half = Fraction(1, 2)
 | 
|  |    156 | 
 | 
|  |    157 | half.denom
 | 
|  |    158 | 
 | 
|  |    159 | 
 | 
| 223 |    160 | // In mandelbrot.scala I used complex (imaginary) numbers 
 | 
|  |    161 | // and implemented the usual arithmetic operations for complex 
 | 
|  |    162 | // numbers.
 | 
| 222 |    163 | 
 | 
|  |    164 | case class Complex(re: Double, im: Double) { 
 | 
|  |    165 |   // represents the complex number re + im * i
 | 
|  |    166 |   def +(that: Complex) = Complex(this.re + that.re, this.im + that.im)
 | 
|  |    167 |   def -(that: Complex) = Complex(this.re - that.re, this.im - that.im)
 | 
|  |    168 |   def *(that: Complex) = Complex(this.re * that.re - this.im * that.im,
 | 
|  |    169 |                                  this.re * that.im + that.re * this.im)
 | 
|  |    170 |   def *(that: Double) = Complex(this.re * that, this.im * that)
 | 
|  |    171 |   def abs = Math.sqrt(this.re * this.re + this.im * this.im)
 | 
|  |    172 | }
 | 
|  |    173 | 
 | 
|  |    174 | val test = Complex(1, 2) + Complex (3, 4)
 | 
|  |    175 | 
 | 
|  |    176 | // this could have equally been written as
 | 
|  |    177 | val test = Complex(1, 2).+(Complex (3, 4))
 | 
|  |    178 | 
 | 
|  |    179 | // this applies to all methods, but requires
 | 
|  |    180 | import scala.language.postfixOps
 | 
|  |    181 | 
 | 
|  |    182 | List(5, 2, 3, 4).sorted
 | 
|  |    183 | List(5, 2, 3, 4) sorted
 | 
|  |    184 | 
 | 
|  |    185 | 
 | 
| 223 |    186 | // ...to allow the notation n + m * i
 | 
| 222 |    187 | import scala.language.implicitConversions   
 | 
| 223 |    188 | 
 | 
| 222 |    189 | object i extends Complex(0, 1)
 | 
|  |    190 | implicit def double2complex(re: Double) = Complex(re, 0)
 | 
|  |    191 | 
 | 
|  |    192 | 
 | 
|  |    193 | val inum1 = -2.0 + -1.5 * i
 | 
|  |    194 | val inum2 =  1.0 +  1.5 * i
 | 
|  |    195 | 
 | 
|  |    196 | 
 | 
|  |    197 | 
 | 
| 223 |    198 | // All is public by default....so no public is needed.
 | 
|  |    199 | // You can have the usual restrictions about private 
 | 
|  |    200 | // values and methods, if you are MUTABLE !!!
 | 
| 222 |    201 | 
 | 
|  |    202 | case class BankAccount(init: Int) {
 | 
|  |    203 | 
 | 
|  |    204 |   private var balance = init
 | 
|  |    205 | 
 | 
|  |    206 |   def deposit(amount: Int): Unit = {
 | 
|  |    207 |     if (amount > 0) balance = balance + amount
 | 
|  |    208 |   }
 | 
|  |    209 | 
 | 
|  |    210 |   def withdraw(amount: Int): Int =
 | 
|  |    211 |     if (0 < amount && amount <= balance) {
 | 
|  |    212 |       balance = balance - amount
 | 
|  |    213 |       balance
 | 
|  |    214 |     } else throw new Error("insufficient funds")
 | 
|  |    215 | }
 | 
|  |    216 | 
 | 
| 223 |    217 | // BUT since we are completely IMMUTABLE, this is 
 | 
|  |    218 | // virtually of not concern to us.
 | 
| 222 |    219 | 
 | 
|  |    220 | 
 | 
|  |    221 | 
 | 
|  |    222 | 
 | 
|  |    223 | 
 | 
|  |    224 | // DFAs in Scala  
 | 
|  |    225 | import scala.util.Try
 | 
| 218 |    226 | 
 | 
|  |    227 | 
 | 
| 222 |    228 | // A is the state type
 | 
|  |    229 | // C is the input (usually characters)
 | 
|  |    230 | 
 | 
| 223 |    231 | case class DFA[A, C](start: A,              // starting state
 | 
|  |    232 |                      delta: (A, C) => A,    // transition function
 | 
|  |    233 |                      fins:  A => Boolean) { // final states (Set)
 | 
| 222 |    234 | 
 | 
|  |    235 |   def deltas(q: A, s: List[C]) : A = s match {
 | 
|  |    236 |     case Nil => q
 | 
|  |    237 |     case c::cs => deltas(delta(q, c), cs)
 | 
|  |    238 |   }
 | 
|  |    239 | 
 | 
|  |    240 |   def accepts(s: List[C]) : Boolean = 
 | 
|  |    241 |     Try(fins(deltas(start, s))) getOrElse false
 | 
|  |    242 | }
 | 
|  |    243 | 
 | 
|  |    244 | // the example shown in the handout 
 | 
|  |    245 | abstract class State
 | 
|  |    246 | case object Q0 extends State
 | 
|  |    247 | case object Q1 extends State
 | 
|  |    248 | case object Q2 extends State
 | 
|  |    249 | case object Q3 extends State
 | 
|  |    250 | case object Q4 extends State
 | 
|  |    251 | 
 | 
|  |    252 | val delta : (State, Char) => State = 
 | 
|  |    253 |   { case (Q0, 'a') => Q1
 | 
|  |    254 |     case (Q0, 'b') => Q2
 | 
|  |    255 |     case (Q1, 'a') => Q4
 | 
|  |    256 |     case (Q1, 'b') => Q2
 | 
|  |    257 |     case (Q2, 'a') => Q3
 | 
|  |    258 |     case (Q2, 'b') => Q2
 | 
|  |    259 |     case (Q3, 'a') => Q4
 | 
|  |    260 |     case (Q3, 'b') => Q0
 | 
|  |    261 |     case (Q4, 'a') => Q4
 | 
|  |    262 |     case (Q4, 'b') => Q4 
 | 
|  |    263 |     case _ => throw new Exception("Undefined") }
 | 
|  |    264 | 
 | 
|  |    265 | val dfa = DFA(Q0, delta, Set[State](Q4))
 | 
|  |    266 | 
 | 
|  |    267 | dfa.accepts("abaaa".toList)     // true
 | 
|  |    268 | dfa.accepts("bbabaab".toList)   // true
 | 
|  |    269 | dfa.accepts("baba".toList)      // false
 | 
|  |    270 | dfa.accepts("abc".toList)       // false
 | 
|  |    271 | 
 | 
| 223 |    272 | // another DFA with a Sink state
 | 
| 222 |    273 | abstract class S
 | 
|  |    274 | case object S0 extends S
 | 
|  |    275 | case object S1 extends S
 | 
|  |    276 | case object S2 extends S
 | 
|  |    277 | case object Sink extends S
 | 
|  |    278 | 
 | 
|  |    279 | // transition function with a sink state
 | 
| 223 |    280 | val sigma : (S, Char) => S = 
 | 
| 222 |    281 |   { case (S0, 'a') => S1
 | 
|  |    282 |     case (S1, 'a') => S2
 | 
|  |    283 |     case _ => Sink
 | 
|  |    284 |   }
 | 
|  |    285 | 
 | 
|  |    286 | val dfa2 = DFA(S0, sigma, Set[S](S2))
 | 
|  |    287 | 
 | 
|  |    288 | dfa2.accepts("aa".toList)        // true
 | 
|  |    289 | dfa2.accepts("".toList)          // false
 | 
|  |    290 | dfa2.accepts("ab".toList)        // false
 | 
|  |    291 | 
 | 
| 223 |    292 | //  we could also have a dfa for numbers
 | 
|  |    293 | val sigmai : (S, Int) => S = 
 | 
|  |    294 |   { case (S0, 1) => S1
 | 
|  |    295 |     case (S1, 1) => S2
 | 
|  |    296 |     case _ => Sink
 | 
|  |    297 |   }
 | 
|  |    298 | 
 | 
|  |    299 | val dfa3 = DFA(S0, sigmai, Set[S](S2))
 | 
|  |    300 | 
 | 
|  |    301 | dfa3.accepts(List(1, 1))        // true
 | 
|  |    302 | dfa3.accepts(Nil)               // false
 | 
|  |    303 | dfa3.accepts(List(1, 2))        // false
 | 
|  |    304 | 
 | 
| 222 |    305 | 
 | 
|  |    306 | 
 | 
|  |    307 | 
 | 
|  |    308 | // NFAs (Nondeterministic Finite Automata)
 | 
|  |    309 | 
 | 
|  |    310 | 
 | 
| 223 |    311 | case class NFA[A, C](starts: Set[A],          // starting states
 | 
|  |    312 |                      delta: (A, C) => Set[A], // transition function
 | 
|  |    313 |                      fins:  A => Boolean) {   // final states 
 | 
| 222 |    314 | 
 | 
|  |    315 |   // given a state and a character, what is the set of 
 | 
|  |    316 |   // next states? if there is none => empty set
 | 
|  |    317 |   def next(q: A, c: C) : Set[A] = 
 | 
|  |    318 |     Try(delta(q, c)) getOrElse Set[A]() 
 | 
|  |    319 | 
 | 
|  |    320 |   // depth-first version of accepts
 | 
|  |    321 |   def search(q: A, s: List[C]) : Boolean = s match {
 | 
|  |    322 |     case Nil => fins(q)
 | 
|  |    323 |     case c::cs => next(q, c).exists(search(_, cs))
 | 
|  |    324 |   }
 | 
|  |    325 | 
 | 
|  |    326 |   def accepts(s: List[C]) : Boolean =
 | 
|  |    327 |     starts.exists(search(_, s))
 | 
|  |    328 | }
 | 
|  |    329 | 
 | 
|  |    330 | 
 | 
|  |    331 | 
 | 
|  |    332 | // NFA examples
 | 
|  |    333 | 
 | 
|  |    334 | val nfa_trans1 : (State, Char) => Set[State] = 
 | 
|  |    335 |   { case (Q0, 'a') => Set(Q0, Q1) 
 | 
|  |    336 |     case (Q0, 'b') => Set(Q2) 
 | 
|  |    337 |     case (Q1, 'a') => Set(Q1) 
 | 
|  |    338 |     case (Q2, 'b') => Set(Q2) }
 | 
|  |    339 | 
 | 
|  |    340 | val nfa = NFA(Set[State](Q0), nfa_trans1, Set[State](Q2))
 | 
|  |    341 | 
 | 
|  |    342 | nfa.accepts("aa".toList)             // false
 | 
|  |    343 | nfa.accepts("aaaaa".toList)          // false
 | 
|  |    344 | nfa.accepts("aaaaab".toList)         // true
 | 
|  |    345 | nfa.accepts("aaaaabbb".toList)       // true
 | 
|  |    346 | nfa.accepts("aaaaabbbaaa".toList)    // false
 | 
|  |    347 | nfa.accepts("ac".toList)             // false
 | 
|  |    348 | 
 | 
|  |    349 | 
 | 
| 223 |    350 | // Q: Why the kerfuffle about the polymorphic types in DFAs/NFAs?
 | 
| 224 |    351 | // A: Subset construction.
 | 
| 222 |    352 | 
 | 
|  |    353 | def subset[A, C](nfa: NFA[A, C]) : DFA[Set[A], C] = {
 | 
|  |    354 |   DFA(nfa.starts, 
 | 
|  |    355 |       { case (qs, c) => nfa.nexts(qs, c) }, 
 | 
|  |    356 |       _.exists(nfa.fins))
 | 
|  |    357 | }
 | 
|  |    358 | 
 | 
|  |    359 | subset(nfa1).accepts("aa".toList)             // false
 | 
|  |    360 | subset(nfa1).accepts("aaaaa".toList)          // false
 | 
|  |    361 | subset(nfa1).accepts("aaaaab".toList)         // true
 | 
|  |    362 | subset(nfa1).accepts("aaaaabbb".toList)       // true
 | 
|  |    363 | subset(nfa1).accepts("aaaaabbbaaa".toList)    // false
 | 
|  |    364 | subset(nfa1).accepts("ac".toList)             // false
 | 
|  |    365 | 
 | 
|  |    366 | 
 | 
|  |    367 | 
 | 
|  |    368 | 
 | 
|  |    369 | 
 | 
|  |    370 | 
 | 
|  |    371 | 
 | 
|  |    372 | // Cool Stuff in Scala
 | 
|  |    373 | //=====================
 | 
|  |    374 | 
 | 
|  |    375 | 
 | 
|  |    376 | // Implicits or How to Pimp my Library
 | 
|  |    377 | //=====================================
 | 
|  |    378 | //
 | 
|  |    379 | // For example adding your own methods to Strings:
 | 
|  |    380 | // Imagine you want to increment strings, like
 | 
|  |    381 | //
 | 
|  |    382 | //     "HAL".increment
 | 
|  |    383 | //
 | 
|  |    384 | // you can avoid ugly fudges, like a MyString, by
 | 
|  |    385 | // using implicit conversions.
 | 
|  |    386 | 
 | 
|  |    387 | 
 | 
|  |    388 | implicit class MyString(s: String) {
 | 
|  |    389 |   def increment = for (c <- s) yield (c + 1).toChar 
 | 
|  |    390 | }
 | 
|  |    391 | 
 | 
|  |    392 | "HAL".increment
 | 
|  |    393 | 
 | 
|  |    394 | 
 | 
|  |    395 | 
 | 
|  |    396 | 
 | 
|  |    397 | // Regular expressions - the power of DSLs in Scala
 | 
|  |    398 | //==================================================
 | 
|  |    399 | 
 | 
|  |    400 | abstract class Rexp
 | 
|  |    401 | case object ZERO extends Rexp                       // nothing
 | 
|  |    402 | case object ONE extends Rexp                        // the empty string
 | 
|  |    403 | case class CHAR(c: Char) extends Rexp               // a character c
 | 
|  |    404 | case class ALT(r1: Rexp, r2: Rexp) extends Rexp     // alternative  r1 + r2
 | 
|  |    405 | case class SEQ(r1: Rexp, r2: Rexp) extends Rexp     // sequence     r1 . r2  
 | 
|  |    406 | case class STAR(r: Rexp) extends Rexp               // star         r*
 | 
|  |    407 | 
 | 
|  |    408 | 
 | 
|  |    409 | 
 | 
|  |    410 | // (ab)*
 | 
|  |    411 | val r0 = STAR(SEQ(CHAR('a'), CHAR('b')))
 | 
|  |    412 | 
 | 
|  |    413 | 
 | 
|  |    414 | // some convenience for typing in regular expressions
 | 
|  |    415 | import scala.language.implicitConversions    
 | 
|  |    416 | import scala.language.reflectiveCalls 
 | 
|  |    417 | 
 | 
|  |    418 | def charlist2rexp(s: List[Char]): Rexp = s match {
 | 
|  |    419 |   case Nil => ONE
 | 
|  |    420 |   case c::Nil => CHAR(c)
 | 
|  |    421 |   case c::s => SEQ(CHAR(c), charlist2rexp(s))
 | 
|  |    422 | }
 | 
| 224 |    423 | implicit def string2rexp(s: String): Rexp = 
 | 
|  |    424 |   charlist2rexp(s.toList)
 | 
| 222 |    425 | 
 | 
|  |    426 | 
 | 
|  |    427 | val r1 = STAR("ab")
 | 
|  |    428 | val r2 = STAR(ALT("ab", "baa baa black sheep"))
 | 
|  |    429 | val r3 = STAR(SEQ("ab", ALT("a", "b")))
 | 
|  |    430 | 
 | 
|  |    431 | implicit def RexpOps (r: Rexp) = new {
 | 
|  |    432 |   def | (s: Rexp) = ALT(r, s)
 | 
|  |    433 |   def % = STAR(r)
 | 
|  |    434 |   def ~ (s: Rexp) = SEQ(r, s)
 | 
|  |    435 | }
 | 
|  |    436 | 
 | 
|  |    437 | implicit def stringOps (s: String) = new {
 | 
|  |    438 |   def | (r: Rexp) = ALT(s, r)
 | 
|  |    439 |   def | (r: String) = ALT(s, r)
 | 
|  |    440 |   def % = STAR(s)
 | 
|  |    441 |   def ~ (r: Rexp) = SEQ(s, r)
 | 
|  |    442 |   def ~ (r: String) = SEQ(s, r)
 | 
|  |    443 | }
 | 
|  |    444 | 
 | 
|  |    445 | //example regular expressions
 | 
|  |    446 | val digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
 | 
|  |    447 | val sign = "+" | "-" | ""
 | 
|  |    448 | val number = sign ~ digit ~ digit.% 
 | 
|  |    449 | 
 | 
|  |    450 | 
 | 
|  |    451 | 
 | 
|  |    452 | // Lazy Evaluation
 | 
|  |    453 | //=================
 | 
|  |    454 | //
 | 
|  |    455 | // do not evaluate arguments just yet
 | 
|  |    456 | 
 | 
|  |    457 | def time_needed[T](i: Int, code: => T) = {
 | 
|  |    458 |   val start = System.nanoTime()
 | 
|  |    459 |   for (j <- 1 to i) code
 | 
|  |    460 |   val end = System.nanoTime()
 | 
|  |    461 |   (end - start)/(i * 1.0e9)
 | 
|  |    462 | }
 | 
|  |    463 | 
 | 
|  |    464 | // same examples using the internal regexes
 | 
|  |    465 | val evil = "(a*)*b"
 | 
|  |    466 | 
 | 
|  |    467 | ("a" * 10 ++ "b").matches(evil)
 | 
|  |    468 | ("a" * 10).matches(evil)
 | 
|  |    469 | ("a" * 10000).matches(evil)
 | 
|  |    470 | ("a" * 20000).matches(evil)
 | 
|  |    471 | 
 | 
|  |    472 | time_needed(2, ("a" * 10000).matches(evil))
 |