With int_of_nat as a quotient_def, lemmas about it can be easily lifted.
--- a/Quot/Examples/IntEx2.thy Thu Dec 10 01:48:39 2009 +0100
+++ b/Quot/Examples/IntEx2.thy Thu Dec 10 02:42:09 2009 +0100
@@ -218,9 +218,19 @@
apply(simp_all add: rep_abs_rsp_left[OF Quotient_int])
done
-lemma int_def:
- shows "of_nat m = ABS_int (m, 0)"
-by (induct m) (simp_all add: zero_int_def one_int_def add)
+definition int_of_nat_raw: "int_of_nat_raw m = (m :: nat, 0 :: nat)"
+
+quotient_def
+ int_of_nat :: "int_of_nat :: nat \<Rightarrow> int" where "int_of_nat_raw"
+
+lemma[quot_respect]: "(op = ===> op \<approx>) int_of_nat_raw int_of_nat_raw"
+by (simp add: equivp_reflp[OF int_equivp])
+
+lemma int_def:
+ shows "of_nat m = int_of_nat m"
+apply (induct m)
+apply (simp_all add: zero_int_def one_int_def int_of_nat_def int_of_nat_raw add)
+done
lemma le_antisym_raw:
shows "less_eq_raw i j \<Longrightarrow> less_eq_raw j i \<Longrightarrow> i \<approx> j"
@@ -297,7 +307,7 @@
lemma int_induct_raw:
assumes a: "P (0::nat, 0)"
and b: "\<And>i. P i \<Longrightarrow> P (plus_raw i (1,0))"
- and c: "\<And>i. P i \<Longrightarrow> P (plus_raw i (minus_raw (1,0)))"
+ and c: "\<And>i. P i \<Longrightarrow> P (plus_raw i (uminus_raw (1,0)))"
shows "P x"
apply(case_tac x) apply(simp)
apply(rule_tac x="b" in spec)
@@ -314,10 +324,20 @@
shows "P x"
using a b c by (lifting int_induct_raw)
-lemma zero_le_imp_eq_int:
+lemma zero_le_imp_eq_int_raw:
+ fixes k::"(nat \<times> nat)"
+ shows "less_raw (0,0) k \<Longrightarrow> (\<exists>n > 0. k \<approx> int_of_nat_raw n)"
+apply(cases k)
+apply(simp add:int_of_nat_raw)
+apply(auto)
+apply(rule_tac i="b" and j="a" in less_Suc_induct)
+apply(auto)
+done
+
+lemma zero_le_imp_eq_int:
fixes k::int
- shows "0 < k \<Longrightarrow> \<exists>n > 0. k = of_nat n"
-sorry
+ shows "0 < k \<Longrightarrow> \<exists>n > 0. k = int_of_nat n"
+unfolding less_int_def by (lifting zero_le_imp_eq_int_raw)
lemma zmult_zless_mono2:
fixes i j k::int