More on Function-defined subst.
--- a/Nominal/Ex/Lambda.thy Fri May 21 11:46:47 2010 +0200
+++ b/Nominal/Ex/Lambda.thy Fri May 21 11:55:22 2010 +0200
@@ -521,6 +521,23 @@
"match_Lam :: (atom set) \<Rightarrow> lam \<Rightarrow> (name \<times> lam) option"
is match_Lam_raw
+lemma swap_fresh:
+ assumes a: "fv_lam_raw t \<sharp>* p"
+ shows "alpha_lam_raw (p \<bullet> t) t"
+ using a apply (induct t)
+ apply (simp add: supp_at_base fresh_star_def)
+ apply (rule alpha_lam_raw.intros)
+ apply (metis Rep_name_inverse atom_eqvt atom_name_def fresh_perm)
+ apply (simp)
+ apply (simp only: fresh_star_union)
+ apply clarify
+ apply (rule alpha_lam_raw.intros)
+ apply simp
+ apply simp
+ apply simp
+ apply (rule alpha_lam_raw.intros)
+ sorry
+
lemma [quot_respect]:
"(op = ===> alpha_lam_raw ===> option_rel (prod_rel op = alpha_lam_raw)) match_Lam_raw match_Lam_raw"
proof (intro fun_relI, clarify)
@@ -551,8 +568,8 @@
next
have "atom y \<sharp> p" sorry
have "fv_lam_raw t \<sharp>* ((x \<leftrightarrow> y) \<bullet> p)" sorry
- then have "alpha_lam_raw (((x \<leftrightarrow> y) \<bullet> p) \<bullet> t) t" sorry
- have "alpha_lam_raw (p \<bullet> t) ((x \<leftrightarrow> y) \<bullet> t)" sorry
+ then have "alpha_lam_raw (((x \<leftrightarrow> y) \<bullet> p) \<bullet> t) t" using swap_fresh by auto
+ then have "alpha_lam_raw (p \<bullet> t) ((x \<leftrightarrow> y) \<bullet> t)" sorry
have "alpha_lam_raw t ((x \<leftrightarrow> y) \<bullet> s)" sorry
then have "alpha_lam_raw ((x \<leftrightarrow> ?z) \<bullet> t) ((y \<leftrightarrow> ?z) \<bullet> s)" using eqvts(15) sorry
then show "alpha_lam_raw ((x \<leftrightarrow> new (S \<union> (fv_lam_raw t - {atom x}))) \<bullet> t)
@@ -585,10 +602,8 @@
apply (simp only: new_def)
apply (subgoal_tac "\<forall>a \<in> S. atom z \<noteq> a")
apply (simp only: fresh_def)
-
- thm new_def
- apply simp
-
+ (*thm supp_finite_atom_fset*)
+ sorry
function subst where
"subst v s t = (
@@ -598,15 +613,13 @@
by pat_completeness auto
termination apply (relation "measure (\<lambda>(_, _, t). size t)")
-apply auto[1]
-defer
-apply (case_tac a) apply simp
-apply (frule app_some) apply simp
-apply (case_tac a) apply simp
-apply (frule app_some) apply simp
-apply (case_tac a) apply simp
-apply (frule lam_some)
- apply simp
+ apply auto[1]
+ apply (case_tac a) apply simp
+ apply (frule lam_some) apply simp
+ apply (case_tac a) apply simp
+ apply (frule app_some) apply simp
+ apply (case_tac a) apply simp
+ apply (frule app_some) apply simp
done
lemmas lam_exhaust = lam_raw.exhaust[quot_lifted]
@@ -677,117 +690,30 @@
qed
qed
-lemma size_no_change: "size (p \<bullet> (t :: lam_raw)) = size t"
- by (induct t) simp_all
-function
- subst_raw :: "lam_raw \<Rightarrow> name \<Rightarrow> lam_raw \<Rightarrow> lam_raw"
-where
- "subst_raw (Var_raw x) y s = (if x=y then s else (Var_raw x))"
-| "subst_raw (App_raw l r) y s = App_raw (subst_raw l y s) (subst_raw r y s)"
-| "subst_raw (Lam_raw x t) y s =
- Lam_raw (new ({atom y} \<union> fv_lam_raw s \<union> fv_lam_raw t - {atom x}))
- (subst_raw ((x \<leftrightarrow> (new ({atom y} \<union> fv_lam_raw s \<union> fv_lam_raw t - {atom x}))) \<bullet> t) y s)"
- by (pat_completeness, auto)
-termination
- apply (relation "measure (\<lambda>(t, y, s). (size t))")
- apply (auto simp add: size_no_change)
- done
-
-lemma fv_subst[simp]: "fv_lam_raw (subst_raw t y s) =
- (if (atom y \<in> fv_lam_raw t) then fv_lam_raw s \<union> (fv_lam_raw t - {atom y}) else fv_lam_raw t)"
- apply (induct t arbitrary: s)
- apply (auto simp add: supp_at_base)[1]
- apply (auto simp add: supp_at_base)[1]
- apply (simp only: fv_lam_raw.simps)
- apply simp
- apply (rule conjI)
- apply clarify
- oops
-
-lemma new_eqvt[eqvt]: "p \<bullet> (new s) = new (p \<bullet> s)"
- oops
-
-lemma subst_var_raw_eqvt[eqvt]: "p \<bullet> (subst_raw t y s) = subst_raw (p \<bullet> t) (p \<bullet> y) (p \<bullet> s)"
- apply (induct t arbitrary: p y s)
- apply simp_all
- apply(perm_simp)
- oops
-
-lemma subst_id: "alpha_lam_raw (subst_raw x d (Var_raw d)) x"
- apply (induct x arbitrary: d)
- apply (simp_all add: alpha_lam_raw.intros)
- apply (rule alpha_lam_raw.intros)
- apply (rule_tac x="(name \<leftrightarrow> new (insert (atom d) (supp d)))" in exI)
- apply (simp add: alphas)
- oops
-
-quotient_definition
- subst2 ("_ [ _ ::= _ ]" [100,100,100] 100)
-where
- "subst2 :: lam \<Rightarrow> name \<Rightarrow> lam \<Rightarrow> lam" is "subst_raw"
-
-lemmas fv_rsp = quot_respect(10)[simplified]
-
-lemma subst_rsp_pre1:
- assumes a: "alpha_lam_raw a b"
- shows "alpha_lam_raw (subst_raw a y c) (subst_raw b y c)"
- using a
- apply (induct a b arbitrary: c y rule: alpha_lam_raw.induct)
- apply (simp add: equivp_reflp[OF lam_equivp])
- apply (simp add: alpha_lam_raw.intros)
- apply (simp only: alphas)
- apply clarify
- apply (simp only: subst_raw.simps)
- apply (rule alpha_lam_raw.intros)
- apply (simp only: alphas)
+lemma subst_proper_eqs:
+ "subst y s (Var x) = (if x = y then s else (Var x))"
+ "subst y s (App l r) = App (subst y s l) (subst y s r)"
+ "atom x \<sharp> (t, s) \<Longrightarrow> subst y s (Lam x t) = Lam x (subst y s t)"
+ apply (subst subst.simps)
+ apply (simp only: match_Var_simps)
+ apply (simp only: option.simps)
+ apply (subst subst.simps)
+ apply (simp only: match_App_simps)
+ apply (simp only: option.simps)
+ apply (simp only: prod.simps)
+ apply (simp only: match_Var_simps)
+ apply (simp only: option.simps)
+ apply (subst subst.simps)
+ apply (simp only: match_Lam_simps)
+ apply (simp only: match_Var_simps)
+ apply (simp only: match_App_simps)
+ apply (simp only: option.simps)
+ apply (simp only: Let_def)
+ apply (simp only: option.simps)
+ apply (simp only: prod.simps)
sorry
-lemma subst_rsp_pre2:
- assumes a: "alpha_lam_raw a b"
- shows "alpha_lam_raw (subst_raw c y a) (subst_raw c y b)"
- using a
- apply (induct c arbitrary: a b y)
- apply (simp add: equivp_reflp[OF lam_equivp])
- apply (simp add: alpha_lam_raw.intros)
- apply simp
- apply (rule alpha_lam_raw.intros)
- apply (rule_tac x="((new (insert (atom y) (fv_lam_raw a \<union> fv_lam_raw c) -
- {atom name}))\<leftrightarrow>(new (insert (atom y) (fv_lam_raw b \<union> fv_lam_raw c) -
- {atom name})))" in exI)
- apply (simp only: alphas)
- apply (tactic {* split_conj_tac 1 *})
- prefer 3
- sorry
-
-lemma [quot_respect]:
- "(alpha_lam_raw ===> op = ===> alpha_lam_raw ===> alpha_lam_raw) subst_raw subst_raw"
- proof (intro fun_relI, simp)
- fix a b c d :: lam_raw
- fix y :: name
- assume a: "alpha_lam_raw a b"
- assume b: "alpha_lam_raw c d"
- have c: "alpha_lam_raw (subst_raw a y c) (subst_raw b y c)" using subst_rsp_pre1 a by simp
- then have d: "alpha_lam_raw (subst_raw b y c) (subst_raw b y d)" using subst_rsp_pre2 b by simp
- show "alpha_lam_raw (subst_raw a y c) (subst_raw b y d)"
- using c d equivp_transp[OF lam_equivp] by blast
- qed
-
-lemma simp3:
- "x \<noteq> y \<Longrightarrow> atom x \<notin> fv_lam_raw s \<Longrightarrow> alpha_lam_raw (subst_raw (Lam_raw x t) y s) (Lam_raw x (subst_raw t y s))"
- apply simp
- apply (rule alpha_lam_raw.intros)
- apply (rule_tac x ="(x \<leftrightarrow> (new (insert (atom y) (fv_lam_raw s \<union> fv_lam_raw t) -
- {atom x})))" in exI)
- apply (simp only: alphas)
- sorry
-
-lemmas subst_simps = subst_raw.simps(1-2)[quot_lifted,no_vars]
- simp3[quot_lifted,simplified lam.supp,simplified fresh_def[symmetric], no_vars]
-
-
-thm subst_raw.simps(3)[quot_lifted,no_vars]
-
end