--- a/Nominal-General/Nominal2_Base.thy Wed Apr 28 08:24:46 2010 +0200
+++ b/Nominal-General/Nominal2_Base.thy Wed Apr 28 08:32:33 2010 +0200
@@ -1188,7 +1188,7 @@
apply(simp add: atom_image_cong)
done
-lemma supp_finite_at_set:
+lemma supp_finite_set_at_base:
assumes a: "finite S"
shows "supp S = atom ` S"
proof -
@@ -1199,11 +1199,11 @@
finally show "supp S = atom ` S" by simp
qed
-lemma supp_at_insert:
+lemma supp_at_base_insert:
fixes a::"'a::at_base"
assumes a: "finite S"
shows "supp (insert a S) = supp a \<union> supp S"
- using a by (simp add: supp_finite_at_set supp_at_base)
+ using a by (simp add: supp_finite_set_at_base supp_at_base)
section {* library functions for the nominal infrastructure *}
use "nominal_library.ML"
--- a/Nominal/Nominal2_FSet.thy Wed Apr 28 08:24:46 2010 +0200
+++ b/Nominal/Nominal2_FSet.thy Wed Apr 28 08:32:33 2010 +0200
@@ -80,11 +80,11 @@
done
lemma supp_at_finsert:
- fixes S::"('a::at) fset"
- shows "supp (finsert x S) = supp x \<union> supp S"
+ fixes a::"'a::at_base"
+ shows "supp (finsert a S) = supp a \<union> supp S"
apply (subst supp_fset_to_set[symmetric])
apply (simp add: supp_finite_atom_set)
- apply (simp add: supp_at_insert[OF fin_fset_to_set])
+ apply (simp add: supp_at_base_insert[OF fin_fset_to_set])
apply (simp add: supp_fset_to_set)
done
@@ -92,7 +92,7 @@
"supp {||} = {}"
by (simp add: supp_def eqvts)
-instance fset :: (at) fs
+instance fset :: (at_base) fs
apply (default)
apply (induct_tac x rule: fset_induct)
apply (simp add: supp_fempty)
@@ -101,8 +101,9 @@
done
lemma supp_at_fset:
- "supp (fset :: 'a :: at fset) = fset_to_set (fmap atom fset)"
- apply (induct fset)
+ fixes S::"('a::at_base) fset"
+ shows "supp S = fset_to_set (fmap atom S)"
+ apply (induct S)
apply (simp add: supp_fempty)
apply (simp add: supp_at_finsert)
apply (simp add: supp_at_base)