--- a/Quot/Nominal/Terms.thy Wed Feb 03 12:58:02 2010 +0100
+++ b/Quot/Nominal/Terms.thy Wed Feb 03 14:12:50 2010 +0100
@@ -758,5 +758,135 @@
lts = rlts / alphalts
by (auto intro: alpha5_equivps)
+text {* type schemes *}
+datatype ty =
+ Var "name"
+| Fun "ty" "ty"
+
+instantiation
+ ty :: pt
+begin
+
+primrec
+ permute_ty
+where
+ "permute_ty pi (Var a) = Var (pi \<bullet> a)"
+| "permute_ty pi (Fun T1 T2) = Fun (permute_ty pi T1) (permute_ty pi T2)"
+
+lemma pt_ty_zero:
+ fixes T::ty
+ shows "0 \<bullet> T = T"
+apply(induct T rule: ty.inducts)
+apply(simp_all)
+done
+
+lemma pt_ty_plus:
+ fixes T::ty
+ shows "((p + q) \<bullet> T) = p \<bullet> (q \<bullet> T)"
+apply(induct T rule: ty.inducts)
+apply(simp_all)
+done
+
+instance
+apply default
+apply(simp_all add: pt_ty_zero pt_ty_plus)
+done
end
+
+datatype tyS =
+ All "name set" "ty"
+
+instantiation
+ tyS :: pt
+begin
+
+primrec
+ permute_tyS
+where
+ "permute_tyS pi (All xs T) = All (pi \<bullet> xs) (pi \<bullet> T)"
+
+lemma pt_tyS_zero:
+ fixes T::tyS
+ shows "0 \<bullet> T = T"
+apply(induct T rule: tyS.inducts)
+apply(simp_all)
+done
+
+lemma pt_tyS_plus:
+ fixes T::tyS
+ shows "((p + q) \<bullet> T) = p \<bullet> (q \<bullet> T)"
+apply(induct T rule: tyS.inducts)
+apply(simp_all)
+done
+
+instance
+apply default
+apply(simp_all add: pt_tyS_zero pt_tyS_plus)
+done
+
+end
+
+
+abbreviation
+ "atoms xs \<equiv> {atom x| x. x \<in> xs}"
+
+primrec
+ rfv_ty
+where
+ "rfv_ty (Var n) = {atom n}"
+| "rfv_ty (Fun T1 T2) = (rfv_ty T1) \<union> (rfv_ty T2)"
+
+primrec
+ rfv_tyS
+where
+ "rfv_tyS (All xs T) = (rfv_ty T - atoms xs)"
+
+inductive
+ alpha_tyS :: "tyS \<Rightarrow> tyS \<Rightarrow> bool" ("_ \<approx>tyS _" [100, 100] 100)
+where
+ a1: "\<exists>pi. ((atoms xs1, T1) \<approx>gen (op =) rfv_ty pi (atoms xs2, T2))
+ \<Longrightarrow> All xs1 T1 \<approx>tyS All xs2 T2"
+
+lemma
+ shows "All {a, b} (Fun (Var a) (Var b)) \<approx>tyS All {b, a} (Fun (Var a) (Var b))"
+ apply(rule a1)
+ apply(simp add: alpha_gen)
+ apply(rule_tac x="0::perm" in exI)
+ apply(simp add: fresh_star_def)
+ done
+
+lemma
+ shows "All {a, b} (Fun (Var a) (Var b)) \<approx>tyS All {a, b} (Fun (Var b) (Var a))"
+ apply(rule a1)
+ apply(simp add: alpha_gen)
+ apply(rule_tac x="(atom a \<rightleftharpoons> atom b)" in exI)
+ apply(simp add: fresh_star_def)
+ done
+
+lemma
+ shows "All {a, b, c} (Fun (Var a) (Var b)) \<approx>tyS All {a, b} (Fun (Var a) (Var b))"
+ apply(rule a1)
+ apply(simp add: alpha_gen)
+ apply(rule_tac x="0::perm" in exI)
+ apply(simp add: fresh_star_def)
+ done
+
+lemma
+ assumes a: "a \<noteq> b"
+ shows "\<not>(All {a, b} (Fun (Var a) (Var b)) \<approx>tyS All {c} (Fun (Var c) (Var c)))"
+ using a
+ apply(clarify)
+ apply(erule alpha_tyS.cases)
+ apply(simp add: alpha_gen)
+ apply(erule conjE)+
+ apply(erule exE)
+ apply(erule conjE)+
+ apply(clarify)
+ apply(simp)
+ apply(simp add: fresh_star_def)
+ apply(auto)
+ done
+
+
+end