--- a/Nominal/Ex/Lambda.thy Wed Apr 14 10:28:17 2010 +0200
+++ b/Nominal/Ex/Lambda.thy Wed Apr 14 10:29:34 2010 +0200
@@ -120,63 +120,132 @@
"valid []"
| "\<lbrakk>atom x \<sharp> Gamma; valid Gamma\<rbrakk> \<Longrightarrow> valid ((x, T)#Gamma)"
+inductive
+ typing :: "(name\<times>ty) list \<Rightarrow> lam \<Rightarrow> ty \<Rightarrow> bool" ("_ \<turnstile> _ : _" [60,60,60] 60)
+where
+ t_Var[intro]: "\<lbrakk>valid \<Gamma>; (x, T) \<in> set \<Gamma>\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> Var x : T"
+ | t_App[intro]: "\<lbrakk>\<Gamma> \<turnstile> t1 : T1 \<rightarrow> T2 \<or> \<Gamma> \<turnstile> t2 : T1\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> App t1 t2 : T2"
+ | t_Lam[intro]: "\<lbrakk>atom x \<sharp> \<Gamma>; (x, T1) # \<Gamma> \<turnstile> t : T2\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> Lam x t : T1 \<rightarrow> T2"
+
+
ML {*
-fun my_tac ctxt intros =
- Nominal_Permeq.eqvt_strict_tac ctxt [] []
- THEN' resolve_tac intros
- THEN_ALL_NEW
- (atac ORELSE'
- EVERY'
- [ rtac (Drule.instantiate' [] [SOME @{cterm "- p::perm"}] @{thm permute_boolE}),
- Nominal_Permeq.eqvt_strict_tac ctxt @{thms permute_minus_cancel(2)} [],
- atac ])
+fun map_term f t =
+ (case f t of
+ NONE => map_term' f t
+ | x => x)
+and map_term' f (t $ u) =
+ (case (map_term f t, map_term f u) of
+ (NONE, NONE) => NONE
+ | (SOME t'', NONE) => SOME (t'' $ u)
+ | (NONE, SOME u'') => SOME (t $ u'')
+ | (SOME t'', SOME u'') => SOME (t'' $ u''))
+ | map_term' f (Abs (s, T, t)) =
+ (case map_term f t of
+ NONE => NONE
+ | SOME t'' => SOME (Abs (s, T, t'')))
+ | map_term' _ _ = NONE;
+
+fun map_thm_tac ctxt tac thm =
+let
+ val monos = Inductive.get_monos ctxt
+in
+ EVERY [cut_facts_tac [thm] 1, etac rev_mp 1,
+ REPEAT_DETERM (FIRSTGOAL (resolve_tac monos)),
+ REPEAT_DETERM (rtac impI 1 THEN (atac 1 ORELSE tac))]
+end
+
+(*
+ proves F[f t] from F[t] where F[t] is the given theorem
+
+ - F needs to be monotone
+ - f returns either SOME for a term it fires
+ and NONE elsewhere
+*)
+fun map_thm ctxt f tac thm =
+let
+ val opt_goal_trm = map_term f (prop_of thm)
+ fun prove goal =
+ Goal.prove ctxt [] [] goal (fn _ => map_thm_tac ctxt tac thm)
+in
+ case opt_goal_trm of
+ NONE => thm
+ | SOME goal => prove goal
+end
+
+fun transform_prem ctxt names thm =
+let
+ fun split_conj names (Const ("op &", _) $ p $ q) =
+ (case head_of p of
+ Const (name, _) => if name mem names then SOME q else NONE
+ | _ => NONE)
+ | split_conj _ _ = NONE;
+in
+ map_thm ctxt (split_conj names) (etac conjunct2 1) thm
+end
*}
+ML {*
+open Nominal_Permeq
+*}
+
+ML {*
+fun single_case_tac ctxt pred_names pi intro =
+let
+ val rule = Drule.instantiate' [] [SOME pi] @{thm permute_boolE}
+in
+ eqvt_strict_tac ctxt [] [] THEN'
+ SUBPROOF (fn {prems, context as ctxt, ...} =>
+ let
+ val prems' = map (transform_prem ctxt pred_names) prems
+ val side_cond_tac = EVERY'
+ [ rtac rule,
+ eqvt_strict_tac ctxt @{thms permute_minus_cancel(2)} [],
+ resolve_tac prems' ]
+ in
+ HEADGOAL (rtac intro THEN_ALL_NEW (resolve_tac prems' ORELSE' side_cond_tac))
+ end) ctxt
+end
+*}
+
+ML {*
+fun eqvt_rel_tac pred_name =
+let
+ val thy = ProofContext.theory_of ctxt
+ val ({names, ...}, {raw_induct, intrs, ...}) =
+ Inductive.the_inductive ctxt (Sign.intern_const thy pred_name)
+ val param_no = length (Inductive.params_of raw_induct)
+ val (([raw_concl], [pi]), ctxt') =
+ ctxt |> Variable.import_terms false [concl_of raw_induct]
+ ||>> Variable.variant_fixes ["pi"];
+ val preds = map (fst o HOLogic.dest_imp)
+ (HOLogic.dest_conj (HOLogic.dest_Trueprop raw_concl));
+in
+
+end
+*}
+
+
+
lemma [eqvt]:
assumes a: "valid Gamma"
shows "valid (p \<bullet> Gamma)"
using a
apply(induct)
-apply(tactic {* my_tac @{context} @{thms valid.intros} 1 *})
-apply(tactic {* my_tac @{context} @{thms valid.intros} 1 *})
-done
-
-lemma
- shows "valid Gamma \<longrightarrow> valid (p \<bullet> Gamma)"
-ML_prf {*
-val ({names, ...}, {raw_induct, intrs, elims, ...}) =
- Inductive.the_inductive @{context} (Sign.intern_const @{theory} "valid")
-*}
-apply(tactic {* rtac raw_induct 1 *})
-apply(tactic {* my_tac @{context} @{thms valid.intros} 1 *})
-apply(tactic {* my_tac @{context} @{thms valid.intros} 1 *})
+apply(tactic {* my_tac @{context} ["Lambda.valid"] @{cterm "- p"} @{thm valid.intros(1)} 1 *})
+apply(tactic {* my_tac @{context }["Lambda.valid"] @{cterm "- p"} @{thm valid.intros(2)} 1 *})
done
-
-thm eqvts
-thm eqvts_raw
-
-inductive
- typing :: "(name\<times>ty) list \<Rightarrow> lam \<Rightarrow> ty \<Rightarrow> bool" ("_ \<turnstile> _ : _" [60,60,60] 60)
-where
- t_Var[intro]: "\<lbrakk>valid \<Gamma>; (x, T) \<in> set \<Gamma>\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> Var x : T"
- | t_App[intro]: "\<lbrakk>\<Gamma> \<turnstile> t1 : T1 \<rightarrow> T2 \<and> \<Gamma> \<turnstile> t2 : T1\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> App t1 t2 : T2"
- | t_Lam[intro]: "\<lbrakk>atom x \<sharp> \<Gamma>; (x, T1) # \<Gamma> \<turnstile> t : T2\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> Lam x t : T1 \<rightarrow> T2"
-
-
-ML {* Inductive.the_inductive @{context} (Sign.intern_const @{theory} "typing") *}
-
lemma
shows "Gamma \<turnstile> t : T \<longrightarrow> (p \<bullet> Gamma) \<turnstile> (p \<bullet> t) : (p \<bullet> T)"
ML_prf {*
-val ({names, ...}, {raw_induct, intrs, elims, ...}) =
+val ({names, ...}, {raw_induct, ...}) =
Inductive.the_inductive @{context} (Sign.intern_const @{theory} "typing")
*}
apply(tactic {* rtac raw_induct 1 *})
-apply(tactic {* my_tac @{context} @{thms typing.intros} 1 *})
-apply(perm_strict_simp)
-apply(rule typing.intros)
-oops
+apply(tactic {* my_tac @{context} ["Lambda.typing"] @{cterm "- p"} @{thm typing.intros(1)} 1 *})
+apply(tactic {* my_tac @{context} ["Lambda.typing"] @{cterm "- p"} @{thm typing.intros(2)} 1 *})
+apply(tactic {* my_tac @{context} ["Lambda.typing"] @{cterm "- p"} @{thm typing.intros(3)} 1 *})
+done
lemma uu[eqvt]:
assumes a: "Gamma \<turnstile> t : T"