Got to about 5 seconds for the longest proof. APPLY_RSP_TAC' solves the quotient internally without instantiation resulting in a faster proof.
--- a/QuotMain.thy Fri Dec 04 10:12:17 2009 +0100
+++ b/QuotMain.thy Fri Dec 04 10:36:35 2009 +0100
@@ -839,6 +839,53 @@
| _ => no_tac)
*}
+(* It proves the QUOTIENT assumptions by calling quotient_tac *)
+ML {*
+fun solve_quotient_assum i ctxt thm =
+ let
+ val tac =
+ (compose_tac (false, thm, i)) THEN_ALL_NEW
+ (quotient_tac ctxt);
+ val gc = Drule.strip_imp_concl (cprop_of thm);
+ in
+ Goal.prove_internal [] gc (fn _ => tac 1)
+ end
+ handle _ => error "solve_quotient_assum"
+*}
+
+ML {*
+fun solve_quotient_assums ctxt thm =
+ let val gl = hd (Drule.strip_imp_prems (cprop_of thm)) in
+ thm OF [Goal.prove_internal [] gl (fn _ => quotient_tac ctxt 1)]
+ end
+ handle _ => error "solve_quotient_assums"
+*}
+
+ML {*
+val APPLY_RSP1_TAC' =
+ Subgoal.FOCUS (fn {concl, asms, context,...} =>
+ case ((HOLogic.dest_Trueprop (term_of concl))) of
+ ((R2 $ (f $ x) $ (g $ y))) =>
+ let
+ val (asmf, asma) = find_qt_asm (map term_of asms);
+ in
+ if (fastype_of asmf) = (fastype_of f) then no_tac else let
+ val ty_a = fastype_of x;
+ val ty_b = fastype_of asma;
+ val ty_c = range_type (type_of f);
+ val thy = ProofContext.theory_of context;
+ val ty_inst = map (SOME o (ctyp_of thy)) [ty_a, ty_b, ty_c];
+ val thm = Drule.instantiate' ty_inst [] @{thm APPLY_RSP1}
+ val te = solve_quotient_assums context thm
+ val t_inst = map (SOME o (cterm_of thy)) [R2, f, g, x, y];
+ val thm = Drule.instantiate' [] t_inst te
+ in
+ (* TODO try sth like: compose_tac (false, thm, 1) 1 *)
+ rtac thm 1
+ end
+ end
+ | _ => no_tac)
+*}
ML {*
fun SOLVES' tac = tac THEN_ALL_NEW (fn _ => no_tac)
@@ -1026,9 +1073,8 @@
fun inj_repabs_tac' ctxt rel_refl trans2 =
(FIRST' [
inj_repabs_tac_fast ctxt trans2,
- NDT ctxt "A" (APPLY_RSP1_TAC ctxt THEN'
- (RANGE [SOLVES' (quotient_tac ctxt),
- quot_true_tac ctxt (fst o dest_comb), quot_true_tac ctxt (snd o dest_comb)])),
+ NDT ctxt "A" (APPLY_RSP1_TAC' ctxt THEN'
+ (RANGE [quot_true_tac ctxt (fst o dest_comb), quot_true_tac ctxt (snd o dest_comb)])),
NDT ctxt "B" (Cong_Tac.cong_tac @{thm cong} THEN'
(RANGE [quot_true_tac ctxt (fst o dest_comb), quot_true_tac ctxt (snd o dest_comb)])),
NDT ctxt "C" (rtac @{thm ext} THEN' quot_true_tac ctxt unlam),
@@ -1072,20 +1118,6 @@
in (f, Abs ("x", T, mk_abs 0 g)) end;
*}
-(* It proves the QUOTIENT assumptions by calling quotient_tac *)
-ML {*
-fun solve_quotient_assum i ctxt thm =
- let
- val tac =
- (compose_tac (false, thm, i)) THEN_ALL_NEW
- (quotient_tac ctxt);
- val gc = Drule.strip_imp_concl (cprop_of thm);
- in
- Goal.prove_internal [] gc (fn _ => tac 1)
- end
- handle _ => error "solve_quotient_assum"
-*}
-
ML {*
fun lambda_allex_prs_simple_conv ctxt ctrm =
case (term_of ctrm) of